Highly concentrated aqueous electrolytes could replace solvents used in batteries

April 24, 2020

Agência FAPESP – Highly concentrated aqueous electrolytes, known as water-in-salt electrolytes, could be an alternative to the organic solvents used in car batteries and other electrochemical devices. Abundance and, hence, low cost are key factors in this application, alongside nontoxicity, according to the review article “Water-in-salt electrolytes for high voltage aqueous electrochemical energy storage devices” published in the journal Current Opinionin Electrochemistry by Vitor Leite Martins and Roberto Manuel Torresi, both of whom are affiliated with the University of São Paulo’s Chemistry Institute (IQ-USP) in Brazil.

The study was conducted as part of Martins’ postdoctoral research supervised by Torresi and part of the Thematic Project Optimization of the physicochemical properties of nanostructured materials for applications in molecular recognition, catalysis and energy conversion/storage, for which Torresi is principal investigator. Both projects are supported by FAPESP.

“The term ‘water-in-salt electrolytes’ refers to solutions constituting a very high concentration of salt in a very small amount of water. The amount of water is just sufficient to dissolve the ions to promote solvation. The system contains no free water, unlike conventional solutions,” Torresi told Agência FAPESP.

This is possible only if the salt molecule to be dissolved comprises a large anion and a small cation, Torresi explained. An example is LiTFSI, i.e., lithium bis(trifluoromethane sulfonyl)imide (CF3SO2NLiSO2CF3), whereas NaCI, i.e., sodium chloride or table salt, is of no use, as it has an anion and cation of similar sizes.

“Because there’s no free water in this ultraconcentrated solution, electrolytic splitting of water into hydrogen and oxygen becomes far more difficult, so the electrochemical stability of the solution is very high despite the system containing water,” he said.

In summary, this innovative technological proposal based on a high concentration of salt in water offers significant advantages over conventional technology using salt dissolved in organic compounds. Nevertheless, the technological use of water-in-salt electrolytes also presents challenges.

“The first is that the solution contains little water and is highly hygroscopic: it tends to absorb moisture from the air, and this changes its water content. The second is that ultraconcentrated aqueous solutions are highly corrosive,” Torresi said.

The propensity to absorb ambient moisture is shared with organic solvents and is one of the reasons why conventional batteries have to be shielded, but corrosiveness is a major disadvantage: the organic solvents currently used in lithium batteries do not attack the electrodes, the only metallic components, to a significant extent.

However, according to Torresi, this drawback should not be overestimated. “Corrosion was a major issue for decades. Now, we know how to refine current collectors, and with a few adaptations, it won’t be hard to surmount the problem of corrosion in a future aqueous battery,” he said. The article “Water-in-salt electrolytes for high voltage aqueous electrochemical energy storage devices” can be retrieved from www.sciencedirect.com/science/article/abs/pii/S245191032030013.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Salt Articles from Brightsurf:

A salt solution toward better bioelectronics
A water-stable dopant enhances and stabilizes the performance of electron-transporting organic electrochemical transistors.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

New technology helps reduce salt, keep flavor
A new processing technology out of Washington State University called microwave assisted thermal sterilization (MATS) could make it possible to reduce sodium while maintaining safety and tastiness.

The salt of the comet
Under the leadership of astrophysicist Kathrin Altwegg, Bernese researchers have found an explanation for why very little nitrogen could previously be accounted for in the nebulous covering of comets: the building block for life predominantly occurs in the form of ammonium salts, the occurrence of which could not previously be measured.

Salt helps proteins move on down the road
Rice chemists match models and experiments to see how salt modifies surface interactions in chromatography used to separate valuable drug proteins.

Mars once had salt lakes similar to Earth
Mars once had salt lakes that are similar to those on Earth and has gone through wet and dry periods, according to an international team of scientists that includes a Texas A&M University College of Geosciences researcher.

Marathoners, take your marks...and fluid and salt!
Legend states that after the Greek army defeated the invading Persian forces near the city of Marathon in 490 B.C.E., the courier Pheidippides ran to Athens to report the victory and then immediately dropped dead.

Water solutions without a grain of salt
Monash University researchers have developed technology that can deliver clean water to thousands of communities worldwide.

Solving the salt problem for seismic imaging
Automated imaging of underground salt bodies from seismic data could help streamline oil and gas exploration.

Higher salt intake can cause gastrointestinal bloating
A study led by researchers at the Johns Hopkins Bloomberg School of Public Health found that individuals reported more gastrointestinal bloating when they ate a diet high in salt.

Read More: Salt News and Salt Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.