New study finds connection between fault roughness and the magnitude of earthquakes

April 24, 2020

A new study led by McGill University has found that tectonic plates beneath the Earth's surface can show varying degrees of roughness and could help explain why certain earthquakes are stronger than others.

Earthquakes happen when the rocks beneath the Earth's surface break along geological fault lines and slide past each other. The properties of these faults - such as the roughness of their surface - can have an influence on the size of seismic events, however their study has been challenging because they are buried deep beneath the Earth's surface.

In order to have a better understanding of the characteristics of these faults, researchers from McGill University, the University of California Santa Cruz and Ruhr University Bochum in Germany used high-resolution seismic reflection data to map and measure the roughness of 350 km2 of a plate boundary fault located off the Pacific coast of Costa Rica.

"We already knew that the roughness of a fault was an important factor, but we did not know how rough faults in the subsurface truly are, nor how variable the roughness is for a single fault," says James Kirkpatrick, a professor in McGill's Department of Earth and Planetary Sciences.

Rougher surfaces of faults may explain earthquake magnitude

In a recently published study in Nature Geoscience, Kirkpatrick and his colleagues were able to show that some parts of the studied fault have a rougher surface than others.

Historically, the earthquakes that have occurred in this part of the world have been moderately large (M7) and Kirkpatrick, who is also the study's first author, believes the rough patches they found might be the reason why.

"These rough patches are stronger and more resistant to earthquake slip," he says. "The historical record of earthquakes is relatively short, so we can't say with certainty that larger ones have not occurred. Future seismic events in the area, which will be recorded with modern equipment, should help us determine if they show the same limited magnitude."

Kirkpatrick and his colleagues also hope to apply their methods to other subduction zones where similar geophysical data is available to start to evaluate whether their conclusions are generally applicable.

"This connection between the fault roughness and earthquake magnitude might one day help us understand the size and style of earthquakes most likely to occur a given fault."
-end-
About this study

"Subduction megathrust heterogeneity characterized from 3D seismic data" by Kirkpatrick et al. was published in Nature Geoscience.

This work received financial support from Natural Sciences and Engineering Research Council of Canada and the National Science Foundation.

About McGill University

Founded in Montreal, Quebec, in 1821, McGill University is Canada's top ranked medical doctoral university. McGill is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

Contacts:

Cynthia Lee
McGill Media Relations Office
514-398-6754
cynthia.lee@mcgill.ca

McGill University

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.