Jackson Lab Scientists Report Advance In Study Of Neuronal Migration In Brain Development

April 24, 1997

BAR HARBOR -- Genetic research conducted at The Jackson Laboratory has identified a protein in mice that may play a fundamental role in the critical process of "wiring" the central nervous system during vertebrate embryonic development.

The abnormalities observed in mouse models bred at the Laboratory with mutations in the rcm (rostral cerebellar malformation) gene involve significant disruption of neuronal migration during development of the brain. Such genetic mutations in human brain development are known to result in disorders including epilepsy and severe mental retardation.

The study -- led by Susan L. Ackerman, Research Scientist at The Jackson Laboratory -- is reported in the April 24 issue of the journal Nature under the title, "The Mouse Rostral Cerebellar Malformation Gene Encodes an UNC-5 like Protein." Co-authors are Leslie P. Kozak, Stefan A. Przyborski, and Barbara B. Knowles, all of The Jackson Laboratory; and Laurie A. Rund, University of Illinois, Urbana, and Bert B. Boyer, University of Alaska, Fairbanks, both formerly of the Laboratory.

"This will have an impact on our understanding of how the human brain develops," says Dr. Ackerman. "This mouse mutant is unique in that it has cerebellar neurons in a completely different region of the brain. Our results support a fundamental role for the rcm protein in critical migratory events during cerebellar development."

Research in mice and other animals has shed light on the complex process of central nervous system development. Billions of neurons from "nurseries" deep within the brain are born and differentiated at specific times and migrate to precise locations in the central nervous system, where they are wired into the intricate circuit that assures the proper functioning of the brain.

But sometimes the migratory process goes astray, with neurons failing to reach the proper destinations and instead forming jumbled-up concentrations in other regions of the brain. In humans, this can result in conditions such as lissencephaly, or "smooth brain," in which the cerebral cortex lacks the normal surface texture. Lissencephalic children seldom survive, suffering severe mental retardation and seizures from birth.

The scientists report in Nature that the rcm mouse exhibits a dramatic reduction in cerebellar size and in cerebellar folding; that ectopic cerebellar cells are present in midbrain regions by three days after birth; and that postnatal cerebellar neuronal migration abnormalities are present. The mouse is also ataxic, or stumbling, in its gait.

The rcm gene is a member of a newly described family of vertebrate homologues of unc-5 (uncoordinated), a protein that has been found to be essential for normal cell migration during the development of the worm, C. elegans, which suggests an evolutionary conservation of gene function between invertebrates and mammals.

Jackson Laboratory

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.