Predicting the movement and impacts of microplastic pollution

April 25, 2017

Marine circulation and weather conditions greatly affect microplastic aggregation and movement. Microplastics, which are particles measuring less than 5 mm, are of increasing concern. They not only become more relevant as other plastic marine litter breaks down into tiny particles, they also interact with species in a range of marine habitats. A study by Natalie Welden and Amy Lusher published in Integrated Environmental Assessment and Management, takes a look at how global climate change and the impact of changing ocean circulation affects the distribution of marine microplastic litter. It is part of a special invited section on microplastics.

Natalie Welden of Open University and lead author of the paper notes, "The ability to predict areas of plastic input and deposition would enable the identification of at risk species, and it would allow for efforts to reduce and remove plastic debris at targeted locations. The current uncertainty as to the effects of global warming on our oceans is the greatest challenge in predicting the future patterns of plastic aggregation in relation to global circulation."

Littering, landfill runoff and loss at sea are the main pathways through which plastics enter the ocean. It is estimated that plastic waste from coastal countries will increase nearly 20-fold by 2025. The density of the plastic determines if it remains in surface waters, becomes beached in coastal areas and estuaries, or sinks to deep-sea sediments. Further, weather conditions and marine circulation play a significant role in the distribution. For example, the circular systems of ocean currents, such as the Gulf Stream in the North Atlantic or the California Current in the Pacific, play a significant role in the movement of plastics from their point of release to remote areas where they can accumulate in central ocean regions called gyres. Unusual large amounts of marine debris have been found in these zones, such as the North Atlantic or Great Pacific garbage patches.

However, our oceans are currently undergoing a marked period of uncertainty brought about by global climate change. For example, ice melts in polar regions is predicted to have a range of effects on the distribution on marine plastics. As many swimmers know, it is easier to float in saltwater than a swimming pool. Reduction in the density of seawater at sites of freshwater input is expected to reduce the relative buoyancy of marine debris, increasing the rate at which plastics sink. Correspondingly, areas of high evaporation, due to the increase in temperature, will experience increased water densities, resulting in plastics persisting in the water column and surface waters.

Adding another layer of complexity, changes in sea surface temperature may also affect the scale and patterns of precipitation, in particular tropical storms, cyclones and tornadoes. Global warming intensifies along-shore wind stress on the ocean surface. Flooding events, intense storms and increasing sea levels also means that more debris littering shorelines will become available for transport in the seas.

"The hope is that future models of climate-ocean feedback are producing more accurate predictions of circulation patterns," said Welden. "This is vital in forecasting and mitigating potential microplastic hotspots and 'garbage patches'."
-end-


Society of Environmental Toxicology and Chemistry

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.