Model for multivalley polaritons

April 25, 2017

Everything we experience is made of light and matter. And the interaction between the two can bring about fascinating effects. For example, it can result in the formation of special quasiparticles, called polaritons, which are a combination of light and matter. A team at the Center for Theoretical Physics of Complex Systems, within the Institute for Basic Science (IBS), modeled the behavior of polaritons in microcavities, nanostructures made of a semiconductor material sandwiched between special mirrors (Bragg mirrors). Published in Scientific Reports, this research brings new ideas to the emerging valleytronics field.

Emerging from the coupling of light (photons) and matter (bound state of electrons and holes known as excitons), polaritons have characteristics of each. They are formed when a light beam of a certain frequency bounces back and forth inside microcavities, causing the rapid interconversion between light and matter and resulting in polaritons with a short lifetime. "You can imagine these quasiparticles as waves that you make in water, they move together harmoniously, but they do not last very long. The short lifetime of polaritons in this system is due to the properties of the photons," explains Mr Meng Sun, first author of the study.

Researchers are studying polaritons in microcavities to understand how their characteristics could be exploited to outperform the present semiconductor technologies. Modern optoelectronics read, process, and store information by controlling the flow of particles, but looking for new more efficient alternatives, other parameters, like the so-called 'valleys' could be considered. Valleys can be visualized by plotting the energy of the polaritons to their momentum. Valleytronics aims to control the properties of the valleys in some materials, like transition metal dichalcogenides (TMDCs), indium gallium aluminum arsenide (InGaAlAs), and graphene.

Being able to manipulate their features would lead to tunable valleys with two clearly different states, corresponding for example to 1 bit and 0 bit, like on-off states in computing and digital communications. A way to distinguish valleys with the same energy level is to obtain valleys with different polarization, so that electrons (or polaritons) would preferentially occupy one valley over the others. IBS scientists have generated a theoretical model for valley polarization that could be useful for valleytronics.

Although polaritons are formed by the coupling of photons and excitons, the research team modeled the two components independently. "Modeling potential profiles of photons and excitons separately is the key to find where they overlap, and then determine the minimal energy positions where valleys occur," points out Sun.

A crucial feature of this system is that polaritons can inherit some properties, like polarization. Valleys with different polarization form spontaneously when the splitting of the transverse (i.e. perpendicular) electronic and magnetic modes of the light beam is taken into consideration (TE-TM splitting).

Since this theoretical model predicts that valleys with opposite polarization can be distinguished and tuned, in principle, different valleys could be selectively excited by a polarized laser light, leading to a possible application in valleytronics.
-end-


Institute for Basic Science

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.