Nav: Home

What's coming next? Scientists identify how the brain predicts speech

April 25, 2017

An international collaboration of neuroscientists has shed light on how the brain helps us to predict what is coming next in speech.

In the study, publishing on April 25 in the open access journal PLOS Biology scientists from Newcastle University, UK, and a neurosurgery group at the University of Iowa, USA, report that they have discovered mechanisms in the brain's auditory cortex involved in processing speech and predicting upcoming words, which is essentially unchanged throughout evolution. Their research reveals how individual neurons coordinate with neural populations to anticipate events, a process that is impaired in many neurological and psychiatric disorders such as dyslexia, schizophrenia and Attention Deficit Hyperactivity Disorder (ADHD).

Using an approach first developed for studying infant language learning, the team of neuroscientists led by Dr Yuki Kikuchi and Prof Chris Petkov of Newcastle University had humans and monkeys listen to sequences of spoken words from a made-up language. Both species were able to learn the predictive relationships between the spoken sounds in the sequences.

Neural responses from the auditory cortex in the two species revealed how populations of neurons responded to the speech sounds and to the learned predictive relationships between the sounds. The neural responses were found to be remarkably similar in both species, suggesting that the way the human auditory cortex responds to speech harnesses evolutionarily conserved mechanisms, rather than those that have uniquely specialized in humans for speech or language.

"Being able to predict events is vital for so much of what we do every day," Professor Petkov notes. "Now that we know humans and monkeys share the ability to predict speech we can apply this knowledge to take forward research to improve our understanding of the human brain."

Dr Kikuchi elaborates, "in effect we have discovered the mechanisms for speech in your brain that work like predictive text on your mobile phone, anticipating what you are going to hear next. This could help us better understand what is happening when the brain fails to make fundamental predictions, such as in people with dementia or after a stroke."

Building on these results, the team are working on projects to harness insights on predictive signals in the brain to develop new models to study how these signals go wrong in patients with stroke or dementia. The long-term goal is to identify strategies that yield more accurate prognoses and treatments for these patients.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.doi.org/10.1371/journal.pbio.2000219

Citation: Kikuchi Y, Attaheri A, Wilson B, Rhone AE, Nourski KV, Gander PE, et al. (2017) Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex. PLoS Biol 15(4): e2000219. doi:10.1371/journal.pbio.2000219

Funding: BBSRC http://www.bbsrc.ac.uk/ (grant number BB/J009849/1). Received by CIP and YK, joint with Quoc Vuong. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Wellcome Trust https://wellcome.ac.uk (grant number WT091681MA). Received by TDG and PEG. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Wellcome Trust https://wellcome.ac.uk (grant number WT092606AIA). Received by CIP (Investigator Award). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NeuroCreative Award. Received by YK. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NIH Intramural contract. Received by CIP and YK. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NIH https://www.nih.gov/ (grant number R01-DC04290). Received by MAH, AER, KVN, CKK, and HK. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Evolution Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.