Nav: Home

Scientists unravel how protein impacts intellectual disability

April 25, 2017

JUPITER, FL - April 25, 2017 - Your brain needs just the right balance between excitatory "on" signals and inhibitory "calm down" signals. Now scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown that a protein helps balance nerve cell communication.

The new study, published today online in the journal Cell Reports, could have implications for potential treatments of intellectual disability and other neurodevelopmental disorders.

"This paper adds a new dimension to our understanding of the molecular mechanisms that impact intellectual disability," said Brock Grill, a TSRI associate professor in the Department of Neuroscience. "Our study is the first to identify a defect in neuron communication caused by altering the activity of a gene called HUWE1, which causes intellectual disability, including Juberg-Marsidi-Brooks syndrome."

Studying neuronal communication is important because the brain needs to balance excitatory neurotransmitters (to increase signal transmission) and inhibitory neurotransmitters (to calm nerve cells down). An imbalance in the excitatory/inhibitory ratio is a central feature of many neurodevelopmental disorders--which occurs through gene overexpression or a loss of gene function.

For the study, Grill and his colleagues investigated neuronal communication balance using a simple model circuit in the nematode C. elegans, a small, transparent worm. Despite its small size, this worm shares half its genetic make-up with humans, which makes it an ideal model to study the genetics of neuron function.

The researchers took a close look at GABA, the principal inhibitory neurotransmitter in C. elegans and the human brain. In C. elegans, the protein responsible for regulating GABA transmission is called EEL-1; in humans, the equivalent protein is known as HUWE1.

The researchers studied the function of EEL-1/HUWE1 in the worm motor circuit and found that decreasing or increasing the protein alters GABA transmission, upending the excitatory/inhibitory balance, a shift that leads to impaired locomotion and increased sensitivity to electroshock-induced seizure.

"Using a simple model circuit, we've identified a key player required to achieve a balance of excitation and inhibition," Grill said. "This opens up a new concept for why HUWE1 causes intellectual disability. HUWE1 affects only the release of the GABA neurotransmitter, not the levels or function of the GABA receptor, Grill noted. He said more research is needed into how this actually affects the brain.

"The paper is an important step in understanding how increased or decreased activity of HUWE1 can alter circuit function and lead to intellectual disability," said TSRI Research Assistant Karla Opperman, first author of the study.

The study represents important progress in understanding the molecular underpinnings of intellectual disability. In particular, results from the study show for the first time that mutations that cause Juberg-Marsidi-Brooks syndrome result in loss of HUWE1 function and can impair nerve cell function.
-end-
In addition to Grill and Opperman, other authors of the study, "The HECT Family Ubiquitin Ligase EEL-1 Regulates Neuronal Function and Development," are Andrew Giles and Rayna L. Birnbaum of TSRI; Ben Mulcahy and Mei Zhen of the Lunenfeld-Tannenbaum Research Institute, Mt. Sinai Hospital, Toronto; Monica G. Risley and Ken Dawson-Scully of Florida Atlantic University; and Erik D. Tulgren of the University of Minnesota.

The study was supported by the National Institutes of Health (grant 2R01 NS072129) and the National Science Foundation (grant IOS-1121095). _

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists--including two Nobel laureates and 20 members of the National Academies of Science, Engineering or Medicine--work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. In October 2016, TSRI announced a strategic affiliation with the California Institute for Biomedical Research (Calibr), representing a renewed commitment to the discovery and development of new medicines to address unmet medical needs. For more information, see http://www.scripps.edu.

Scripps Research Institute

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab