Nanowires could make lithium ion batteries safer

April 25, 2018

From cell phones and laptops to electric vehicles, lithium-ion batteries are the power source that fuels everyday life. But in recent years, they have also drawn attention for catching fire. In an effort to develop a safer battery, scientists report in the ACS journal Nano Letters that the addition of nanowires can not only enhance the battery's fire-resistant capabilities, but also its other properties.

In lithium-ion batteries (LIBs), lithium ions move back and forth between electrodes through an electrolyte. Traditional LIBs have a liquid electrolyte made of salts and organic solvents, but it evaporates easily and can be a fire hazard. So, researchers have turned their attention to solid-state electrolytes as potential alternatives. Several options have been proposed for solid-state electrolytes, but most are not stable or cannot meet large-scale demands. Polymer electrolytes have shown potential because they are stable, inexpensive and flexible; but they have poor conductivity and mechanical properties. So, scientists have been adding an array of compounds to enhance the electrolyte. Xinyong Tao and colleagues previously made magnesium borate (Mg2B2O5) nanowires, which had good mechanical properties and conductivity. They wanted to see whether these properties would also be imparted to batteries when these nanowires were added to a solid-state polymer electrolyte.

The team mixed the solid-state electrolyte with 5, 10, 15 and 20 weight percent of the Mg2B2O5 nanowires. They observed that the nanowires increased the conductivity of the electrolytes and allowed them to sustain more stress compared to the electrolyte without nanowires. The increase in conductivity was due to an increase in the number of ions moving through the electrolyte at a faster rate. The group also tested the flammability of the electrolyte and found that it barely burned. When the nanowire-enhanced electrolyte was paired with a cathode and anode like it would be in a battery, the set-up had a better rate performance and higher cyclic capacity than batteries without added nanowires.
-end-
The authors acknowledge funding from the National Natural Science Foundation of China, the Natural Science Foundation of Zhejiang Province and the Xinmiao Talents Program of Zhejiang Province.

The paper's abstract will be available on April 25 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b00659.

The American Chemical Society is a not-for-profit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Nanowires Articles from Brightsurf:

A new, highly sensitive chemical sensor uses protein nanowires
Writing in NanoResearch, a team at UMass Amherst reports that they have developed bioelectronic ammonia gas sensors that are among the most sensitive ever made.

Giving nanowires a DNA-like twist
Argonne National Laboratory played a critical role in the discovery of a DNA-like twisted crystal structure created with a germanium sulfide nanowire, also known as a 'van der Waals material.' Researchers can tailor these nanowires in many different ways -- twist periods from two to twenty micrometers, lengths up to hundreds of micrometers, and radial dimensions from several hundred nanometers to about ten micrometers.

Shell increases versatility of nanowires
Nanowires promise to make LEDs more colorful and solar cells more efficient, in addition to speeding up computers.

Scientists synthesize new nanowires to improve high-speed communication
Scientists from the Institute of Process Engineering, City University of Hong Kong and their collaborators synthesized highly crystalline ternary In0.28Ga0.72Sb nanowires to demonstrate high carrier mobility and fast IR response.

Dose of vitamin C helps gold nanowires grow
Rice University scientists discover a method to turn stubby gold nanorods into gold nanowires of impressive length.

Silver nanowires promise more comfortable smart textiles
In a paper to be published in the forthcoming issue in NANO, researchers from the Nanjing University of Posts and Telecommunications have developed a simple, scalable and low-cost capillary-driven self-assembly method to prepare flexible and stretchable conductive fibers that have applications in wearable electronics and smart fabrics.

Artificial synapses made from nanowires
Scientists from J├╝lich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell.

Nanowires could make lithium ion batteries safer
From cell phones and laptops to electric vehicles, lithium-ion batteries are the power source that fuels everyday life.

Scientists have a new way to gauge the growth of nanowires
In a new study, researchers from the US Department of Energy's Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than a human hair.

Cleaning nanowires to get out more light
A simple chemical surface treatment improves the performance of nanowire ultraviolet light-emitting diodes.

Read More: Nanowires News and Nanowires Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.