Nav: Home

Molecular evolution: How the building blocks of life may form in space

April 25, 2018

WASHINGTON, D.C., April 25, 2018 -- In a laboratory experiment that mimics astrophysical conditions, with cryogenic temperatures in an ultrahigh vacuum, scientists used an electron gun to irradiate thin sheets of ice covered in basic molecules of methane, ammonia and carbon dioxide. These simple molecules are ingredients for the building blocks of life. The experiment tested how the combination of electrons and basic matter leads to more complex biomolecule forms -- and perhaps eventually to life forms.

"You just need the right combination of ingredients," author Michael Huels said. "These molecules can combine, they can chemically react, under the right conditions, to form larger molecules which then give rise to the bigger biomolecules we see in cells like components of proteins, RNA or DNA, or phospholipids."

The right conditions, in space, include ionizing radiation. In space, molecules are exposed to UV rays and high-energy radiation including X-rays, gamma rays, stellar and solar wind particles and cosmic rays. They are also exposed to low-energy electrons, or LEEs, produced as a secondary product of the collision between radiation and matter. The authors examined LEEs for a more nuanced understanding of how complex molecules might form.

In their paper, in the Journal of Chemical Physics, from AIP Publishing, the authors exposed multilayer ice composed of carbon dioxide, methane and ammonia to LEEs and then used a type of mass spectrometry called temperature programmed desorption (TPD) to characterize the molecules created by LEEs.

In 2017, using a similar method, these researchers were able to create ethanol, a nonessential molecule, from only two ingredients: methane and oxygen. But these are simple molecules, not nearly as complex as the larger molecules that are the stuff of life. This new experiment has yielded a molecule that is more complex, and is essential for terrestrial life: glycine.

Glycine is an amino acid, made of hydrogen, carbon, nitrogen and oxygen. Showing that LEEs can convert simple molecules into more complex forms illustrates how life's building blocks could have formed in space and then arrived on Earth from material delivered via comet or meteorite impact.

In their experiment, for each 260 electrons of exposure, one molecule of glycine was formed. Seeking to know how realistic this rate of formation was in space, not just in the laboratory, the researchers extrapolated out to determine the probability that a carbon dioxide molecule would encounter both a methane molecule and ammonia molecule and how much radiation they, together, might encounter.

"You have to remember -- in space, there is a lot of time," Huels said. "The idea was to get a feel for the probability: Is this a realistic yield, or is this a quantity that is completely nuts, so low or so high that it doesn't make sense? And we find that it is actually quite realistic for a rate of formation of glycine or similar biomolecules."
-end-
The article, "Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons," is authored by Sasan Esmaili, Andrew D. Bass, Pierre Cloutier, Léon Sanche and Michael A. Huels. The article appeared in the Journal of Chemical Physics April 24, 2018 (DOI: 10.1063/1.5021596) and it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5021596.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

American Institute of Physics

Related Methane Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Methane seeps in the Canadian high Arctic
Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming.
Methane emissions from trees
A new study from the University of Delaware is one of the first in the world to show that tree trunks in upland forests actually emit methane rather than store it, representing a new, previously unaccounted source of this powerful greenhouse gas.
Oil production releases more methane than previously thought
Emissions of methane and ethane from oil production have been substantially higher than previously estimated, particularly before 2005.
Bursts of methane may have warmed early Mars
The presence of water on ancient Mars is a paradox.
New method for quantifying methane emissions from manure management
The EU Commision requires Denmark to reduce drastically emissions of greenhouse gases from agriculture.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.
Arctic Ocean methane does not reach the atmosphere
250 methane flares release the climate gas methane from the seabed and into the Arctic Ocean.
Long-sought methane production mechanism identified
Researchers have identified the mechanism by which bacteria create methane, a potent greenhouse gas.
Retreat of the ice followed by millennia of methane release
Methane was seeping from the seafloor for thousands of years following the retreat of the Barents Sea ice sheet, shows a groundbreaking new study in Nature Communications.

Related Methane Reading:

21st Century Complete Guide to Biogas and Methane: Agricultural Recovery, Manure Digesters, AgSTAR, Landfill Methane, Greenhouse Gas Emission Reduction and Global Methane Initiative
by U.S. Government (Author), Department of Agriculture (USDA) (Author), Environmental Protection Agency (EPA) (Author)

This unique compilation provides comprehensive coverage of all aspects of biogas, methane, farm recovery processes, manure digesters and processing, the AgSTAR program, landfill methane gas, and the Global Methane Initiative. AgSTAR is focused on livestock producers (typically swine and dairy farms) for implementing methane recovery systems appropriate for confined livestock facilities that handle liquid or slurry manure. Gas recovery systems and digester technologies may provide enhanced environmental (air and water) and financial performance when compared to traditional waste management... View Details


The Rise and Fall of Captain Methane: Autobiography of a Maverick
by Dorcey Alan Wingo (Author)



"Death on the 'Twilight Zone' Set"

Los Angeles Herald Examiner, July 24, 1982


"Flying debris from exploding gasoline fireballs triggered yesterday's freak helicopter crash that killed veteran actor Vic Morrow and two child actors as they filmed an escape scene, preliminary reports from investigators indicate."

May 29th, 1987 - The jury in the Twilight Zone accident case acquit movie director John Landis and four co-defendants of all charges filed by the LA District Attorney. Among the jurers' conclusions were that the Vietnam era helicopter was... View Details


Methane: Planning a Digester
by Peter-John Meynell (Author)

Describes the physical and chemical processes leading to the production of biogases and describes procedures for constructing a digester to convert sewage and organic wastes to methane for use on farms and in homes View Details


Methane Production Guide - how to make biogas. Three simple anaerobic digesters
by Richard Jemmett (Author)

Methane or biogas is a colourless, odourless, flammable gas and the main constituent, 85% to 90%, of the piped natural gas that we use in our homes in the UK, Europe and the USA.

Methane can be made using simple apparatus and a process known as anaerobic digestion. Anaerobic digestion is one of the most common biological procedures in nature, as the name implies, it means to carry or breakdown in the absence of air. Once you know the principles of this process it is possible to make biogas in small or large quantities from a variety of waste materials. The book describes making an... View Details


Fundamentals of Coalbed Methane Reservoir Engineering
by John Seidle (Author)

Author John Seidle has written this much-needed introduction to a unique unconventional gas resource for students and practicing engineers as well as a basic handbook for those who are involved in coalbed methane on a daily basis and require straightforward, practical answers in the fast-paced business world. View Details


Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis (Special Publications)
by James P. Kennett (Author)

Published by the American Geophysical Union as part of the Special Publications Series.

Like most Earth scientists, we are intrigued and amazed by recent discoveries from ice-core and marine sediments that global climate and the ocean-atmosphere system can abruptly switch from glacial to near-interglacial temperatures within decades. Remarkably, this happened many times during and at the end of the last glacial episode, causing enormous disruptions in the global biosphere. Such discoveries are double-edged, however. Along with the excitement they prompt comes a grand... View Details


Methane and Climate Change
by Dave Reay (Editor), Pete Smith (Editor), Andre van Amstel (Editor)

Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is twenty-five times more powerful than carbon dioxide over a 100-year time horizon – and global warming is likely to enhance methane release from a number of sources. Current natural and man-made sources include many where methane-producing micro-organisms can thrive in anaerobic conditions, particularly ruminant livestock, rice cultivation, landfill, wastewater, wetlands and marine sediments.

This timely and authoritative book... View Details


Methane Energy (Innovative Technologies)
by Courtney Farrell (Author), Bhakta B., Dr. Rath (Contributor)

Explains what methane is and where it comes from, provides a history of the gas, and explores the benefits and environmental impacts of using biogas as an alternative to fossil fuels. View Details


Methane Biocatalysis: Paving the Way to Sustainability
by Marina G. Kalyuzhnaya (Editor), Xin-Hui Xing (Editor)

This book provides in-depth insights into the most recent developments in different areas of microbial methane and methanol utilization, including novel fundamental discoveries in genomics and physiology, innovative strategies for metabolic engineering and new synthetic approaches for generation of feedstocks, chemicals and fuels from methane, and finally economics and the implementation of industrial biocatalysis using methane consuming bacteria.  

Methane, as natural gas or biogas, penetrates every area of human activity, from households to large industries and is often promoted... View Details


A Densified Liquid Methane Delivery System for the Altair Ascent Stage
by National Aeronautics and Space Administration (NASA) (Author)

The Altair Lunar Lander is currently carrying options for both cryogenic and hypergolic ascent stage propulsion modules. The cryogenic option uses liquid methane and liquid oxygen to propel Altair from the lunar surface back to rendezvous with the Orion command module. Recent studies have determined that the liquid methane should be densified by subcooling it to 93 K in order to prevent over-pressurization of the propellant tanks during the 210 day stay on the lunar surface. A trade study has been conducted to determine the preferred method of producing; loading, and maintaining the... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Inspire To Action
What motivates us to take up a cause, follow a leader, or create change? This hour, TED speakers explore stories of inspirational leadership, and what makes some movements more successful than others. Guests include high school history teacher Diane Wolk-Rogers, writer and behavioral researcher Simon Sinek, 2016 Icelandic presidential candidate Halla Tómasdóttir, professor of leadership Jochen Menges, and writer and activist Naomi Klein.
Now Playing: Science for the People

#474 Appearance Matters
This week we talk about appearance, bodies, and body image. Why does what we look like affect our headspace so much? And how do we even begin to research a topic as personal and subjective as body image? To try and find out, we speak with some of the researchers at the Centre for Appearance Research (CAR) at the University of the West of England in Bristol. Psychology Professor Phillippa Diedrichs walks us through body image research, what we know so far, and how we know what we know. Professor of Appearance and Health Psychology Diana Harcourt talks about visible...