Nav: Home

Developing a model critical in creating better devices

April 25, 2019

Water is everywhere. Understanding how it behaves at an intersection with another material and how it affects the performance of that material is helpful when trying to develop better products and devices. An undergraduate researcher at Virginia Tech is leading the way.

Chemical engineering junior Preeya Achari has now developed and recently published as first author a new computational model to better understand the relationship between water and a type of two-dimensional material that is composed of one-atom-thick layers that are flat like a sheet of paper.

The model will help predict the behavior of water at the surface of hexagonal boron nitride, a compound commonly used in cosmetic products, such as eyeshadow and lipstick.

The compound is similar to graphene, which has already shown great potential in lubrication, electronic devices, sensors, separation membranes, and as an additive for cosmetic products. Hexagonal boron nitride, however, has a few more favorable properties, such as its higher resistance to oxidation, flexibility, and greater strength-to-weight ratio -- properties that could also be useful in the production of nanotechnology, drug delivery, and harvesting electricity from sea water.

Prior to the development of the new model, understanding the molecular-level structure of water at the contact surface with hexagonal boron nitride proved very challenging, if not impossible. The development may provide more control in performance of devices made with hexagonal boron nitride and water.

"This knowledge can help in improving the performance of boron nitride-based electronic devices," Achari said.

Achari works in the computational lab of chemical engineering assistant professor Sanket Deshmukh. She developed the model in close collaboration with others in Deshmukh's lab, including post-doctoral researcher Karteek Bejagam and visiting scholar Samrendra Singh.

Achari arrived at Virginia Tech looking for a challenge and was drawn to working with the unfamiliar field of computational materials science -- a field that utilizes computational methods and supercomputers to understand existing materials and accelerate materials discovery and development. She found Deshmukh's lab during her sophomore year and has balanced her time as an undergraduate researcher and a full-time student ever since.

"It is extremely satisfying to see the results of my lab's hard work and to look back at everything I contributed and learned along the way," Achari said. "I also value knowing that the work that my lab and I do will go on to benefit other researchers in my field."

In addition to her recently published journal article, Achari was also awarded best oral presentation at the 2018 Materials Research Society meeting in Boston, Massachusetts.

Virginia Tech

Related Boron Nitride Articles:

Novel approach to enhance performance of graphitic carbon nitride
In a report published in NANO, scientists from China underline the importance of defect engineering to promote catalytic performance by providing a simple and efficient way for modifying and optimizing metal-free semiconductor photocatalyst graphitic carbon nitride (g-C3N4) to solve the dual problems of environmental pollution and lack of fossil resources.
Room-temperature bonded interface improves cooling of gallium nitride devices
A room-temperature bonding technique for integrating wide bandgap materials such as gallium nitride (GaN) with thermally-conducting materials such as diamond could boost the cooling effect on GaN devices and facilitate better performance through higher power levels, longer device lifetime, improved reliability and reduced manufacturing costs.
An ultimate one-dimensional electronic channel in hexagonal boron nitride
IBS scientists have reported that stacking of ultrathin sheets of hBN in a particular way creates a conducting boundary with zero bandgap.
Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light
Researchers at Seoul National University and Inha University in South Korea developed photo-sensitive artificial nerves that emulated functions of a retina by using 2-dimensional carbon nitride (C3N4) nanodot materials.
How to keep boron inside cells during radiotherapy: a novel approach to cancer treatment
Boron neutron capture therapy (BNCT) is a technique in which p-boronophenylalanine (BPA) is transferred to cancer cells, and the boron in it undergoes nuclear fission reaction upon irradiation of thermal neutrons, releasing high energy particles that kill the cells.
Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.
Isotopically enriched cubic boron nitride reveals high thermal conductivity
An international team of physicists, materials scientists, and mechanical engineers has confirmed the high thermal conductivity predicted in isotopically enriched cubic boron nitride, the researchers report in the electronic edition of the journal Science. c-BN is particularly challenging to make and it's difficult to measure its thermal conductivity accurately when the value is high.
'Superdiamond' carbon-boron cages can trap and tap into different properties
A new class of 'superdiamond' carbon-based materials has tunable mechanical and electronic properties while retaining robust, diamond-liked bonds.
Breakthrough made in detecting carbon impurities in gallium nitride crystals via light
Carbon impurity has long hindered efficiency in nitride-based electronic and optical devices.
Bacterial arsenic efflux genes enabled plants to transport boron efficiently
- Nodulin26-like-intrinsic-proteins (NIPs) are essential for the transport of silicon and boron in plants.
More Boron Nitride News and Boron Nitride Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at