Nav: Home

Caffeine gives solar cells an energy boost

April 25, 2019

Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity. Their research, published April 25 in the journal Joule, may enable this cost-effective renewable energy technology to compete on the market with silicon solar cells.

The idea began as a joke over morning coffee. "One day, as we were discussing perovskite solar cells, our colleague Rui Wang said, 'If we need coffee to boost our energy then what about perovskites? Would they need coffee to perform better?'" recalls Jingjing Xue, a PhD candidate in Professor Yang Yang's research group at the Department of Materials Science and Engineering at UCLA.

The offhand comment led the team to recall that the caffeine in coffee is an alkaloid compound containing molecular structures that could interact with the precursors of perovskite materials--compounds with a particular crystal structure that form the light-harvesting layer in a class of solar cells. Previous attempts to improve the thermal stability of these solar cells have included enhancing the perovskite layer by introducing compounds such as dimethyl sulfoxide, but researchers have struggled to boost the cells' efficiency and long-term stability. No one had tried caffeine.

Realizing they might be onto something, the team set aside their coffee and began investigating further. They added caffeine to the perovskite layer of forty solar cells and used infrared spectroscopy (which uses infrared radiation to identify chemical compounds) to determine that the caffeine had successfully bonded with the material.

Conducting further infrared spectroscopy tests, they observed that the carbonyl groups (a carbon atom double bonded to an oxygen) in caffeine interacted with lead ions in the layer to create a "molecular lock." This interaction increased the minimum amount of energy required for the perovskite film to react, boosting the solar cell efficiency from 17 percent to over 20 percent. The molecular lock continued to occur when the material was heated, which could help prevent heat from breaking down the layer.

"We were surprised by the results," says Wang, who is also a PhD candidate in Yang's research group at UCLA. "During our first try incorporating caffeine, our perovskite solar cells already reached almost the highest efficiency we achieved in the paper."

But while caffeine appears to significantly improve the performance of cells that utilize perovskite to absorb sunlight, the researchers do not think it will be useful for other types of solar cells. The unique molecular structure of caffeine only allows it to interact with perovskite precursors, which may give this solar cell variety an edge on the market. Perovskite solar cells already have the advantage of being cheaper and more flexible than their silicon counterparts. They are also easier to manufacture--perovskite cells can be fabricated from solution-based precursors as opposed to solid crystal ingots. With further research, Wang believes caffeine may facilitate large-scale production of perovskite solar cells.

"Caffeine can help the perovskite achieve high crystallinity, low defects, and good stability," he says. "This means it can potentially play a role in the scalable production of perovskite solar cells."

In order to continue enhancing the solar cells' efficiency and stability, the team next plans to further investigate the chemical structure of the caffeine-incorporated perovskite material and to identify the best protective materials for perovskites.
-end-
The authors acknowledge funding from the Air Force Office of Scientific Research, the Office of Naval Research, the UC Solar Program, Solargiga Energy, Horizon PV, the Natural Science Foundation of China, the Collaborative Innovation Center of Suzhou Nano Science and Technology, and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors declare no competing interests.

Joule, Wang and Xue et al.: "Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells" https://www.cell.com/joule/fulltext/S2542-4351(19)30173-4

Joule (@Joule_CP), published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Solar Cells Articles:

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.