Working to advance radiation therapy for children with cancer

April 25, 2019

Doctors at Children's Hospital Los Angeles continue to lead the field of radiation oncology by pushing the leading edge of technological advances. A new report by Arthur Olch, PhD, highlights use of specialized software that could advance treatment accuracy for pediatric cancer patients.

During radiation therapy, patient position must be stable from session to session to ensure radiation beams are properly targeting the tumor. For this reason, x-ray images are taken before each treatment. Radiation therapists can use this information to reorient the patient so that the position is exactly the same each time. Doctors at CHLA are taking this already rigorous process one step further. From early in its development, Dr. Olch, a radiation physicist, has been evaluating the use of new software to advance quality assurance in radiation therapy. In a recent publication, he highlights the use of this technological advance to aid in the treatment of pediatric cancers.

Radiation therapy uses a beam of targeted x-rays that kill cancer cells over the course of treatment. After the beam passes through the patient, it is captured on an imaging panel. Dr. Olch and his team make use of the information carried by these beams - called exit images - using the automated software. These images contain important information about the exact dose being delivered to the tumor and surrounding tissues and can be compared to the planned doses. Up to 20 images might be generated per treatment session. With treatments occurring every day for several weeks, this makes for an unwieldy amount of data to manually process. Now, radiation oncology staff have a tool that will do this in seconds. The program automates not only image capture but also analysis.

Analyzing these images provides new information that allows further fine tuning of the radiation beams and patient position from session to session. This, says Dr. Olch, gives radiation oncologists more information that can be used to account for anatomy changes in real time. "If a patient gains or loses weight, their dimensions change" he says. "Likewise, as the tumor shrinks, radiation beams need to take a different trajectory."

Adjustments are routinely made as a standard of care, but by utilizing the latest technological advances, CHLA radiation oncologists are redefining this standard. "We have a very comprehensive quality assurance strategy," says Dr. Olch, "and this software is an important addition to our already high standard of care."

What does this mean for patients? As one of the only pediatric centers in the country to adopt and use this new technology, CHLA gives patients the best chance at fighting their disease. "If your child needs radiation therapy, we are the only place around using this system," says Dr. Olch. "It's difficult to say at this point whether this will necessarily cure more children. But if we can better target their tumors and refine our radiation dosing, we are reducing toxicity and giving kids their best possible chance."
-end-
Dr. Olch is also a Professor of Clinical Radiation Oncology at USC. He co-authored the publication with Kyle O'Meara and Kenneth Wong, MD. Dr. Olch provides consulting services to Sun Nuclear Corporation, who provided PerFRACTION™ software but did not fund the study.

About Children's Hospital Los Angeles

Children's Hospital Los Angeles has been ranked the top children's hospital in California and sixth in the nation for clinical excellence by the prestigious U.S. News & World Report Honor Roll. The Saban Research Institute at CHLA is one of the largest and most productive pediatric research facilities in the United States. CHLA also is one of America's premier teaching hospitals through its affiliation since 1932 with the Keck School of Medicine of the University of Southern California. For more, visit CHLA.org, the child health blog and the research blog.

Children's Hospital Los Angeles

Related Radiation Therapy Articles from Brightsurf:

Pulmonary artery thrombosis a complication of radiation therapy
According to ARRS' American Journal of Roentgenology, the imaging findings of in situ pulmonary artery thrombosis (PAT) associated with radiation therapy (RT) are different from those of acute pulmonary emboli and do not appear to embolize.

New approach for calculating radiation dosimetry allows for individualized therapy
Researchers have developed a simplified process that could enhance personalization of cancer therapy based on a single nuclear medicine scan.

Developing microbeam radiation therapy (MRT) for inoperable cancer
An innovative radiation treatment that could one day be a valuable addition to conventional radiation therapy for inoperable brain and spinal tumors is a step closer, thanks to new research led by University of Saskatchewan (USask) researchers at the Canadian Light Source (CLS).

Travel considerations specified for 177Lu-DOTATATE radiation therapy patients
Researchers and patient advocates have addressed the challenges related to traveling after receiving 177Lu-DOTATATE radiation therapy in a study published in the April issue of The Journal of Nuclear Medicine.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

AI can jump-start radiation therapy for cancer patients
Artificial intelligence can help cancer patients start their radiation therapy sooner -- and thereby decrease the odds of the cancer spreading -- by instantly translating complex clinical data into an optimal plan of attack.

Towards safer, more effective cancer radiation therapy using X-rays and nanoparticles
X-rays could be tuned to deliver a more effective punch that destroys cancer cells and not harm the body.

Radiation therapy effective against deadly heart rhythm
A single high dose of radiation aimed at the heart significantly reduces episodes of a potentially deadly rapid heart rhythm, according to results of a phase one/two study at Washington University School of Medicine in St.

New mathematical model can improve radiation therapy of brain tumours
Researchers have developed a new model to optimize radiation therapy and significantly increase the number of tumor cells killed during treatment.

Using artificial intelligence to deliver personalized radiation therapy
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to personalize the dose of radiation therapy used to treat cancer patients.

Read More: Radiation Therapy News and Radiation Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.