A revolution in the monitoring of unborn babies

April 26, 2007

New technology, the size of a mobile phone, which could save the life of an unborn child, has been developed by scientists from The University of Nottingham. The device monitors the baby's heart for signs of potential danger. It is small and easy to use so that mother's-to-be can keep a regular check on their baby's heart beat without having to go into hospital and be attached to a machine. No other technology allows them to do this.

It took 15 years of pioneering work and enterprise, with funding from Action Medical Research and Venture Capital, to develop the fetal heart monitor. Researchers believe the device has the potential to benefit 70,000 at risk babies a year in the UK alone.

Statistics show that as many as 10 babies a day are stillborn in the UK and 10 per cent of all pregnancies each year are high risk. The monitor lets doctors read signals produced naturally by the unborn baby's heart. They can then intervene if necessary and potentially save their lives.

The fetal monitor is the result of years of collaborative work between engineers and doctors at the University. The original research was carried out by Dr John Crowe and Dr Barrie Hayes-Gill in the School of Electrical and Electronic Engineering (EEE) and Professor David James and Dr Margaret Ramsay in the School of Human Development. In 2005 the technology was spun out to create Monica Healthcare Ltd. Led by both Dr Hayes-Gill and two ex PhD researchers from EEE, Dr Carl Barratt and Jean Francois Pieri, the company has gone on to develop the monitor even further.

This highly sensitive device, which is able to detect 0.00000001 volts, has now been reduced to the size of a mobile phone. It can compute real time fetal readings and the resulting data can be transmitted by wireless technology to the nearest PC or hand held computer. The device has now passed all EU regulatory safety standards and is currently undergoing clinical trials.

Dr Barrie Hayes-Gill expects the device to go on sale in October this year. "To date we have successfully completed over 33 per cent of the clinical trial. We expect to complete clinical trials in July 2007. This represents a tremendous achievement to turn a research device into a medically approved product in only two years -- an experience which will place us in good stead for future medical products that we have on our horizon."

Currently hospital based ultrasound is used to record babies' heart rates during pregnancy. While this technique has proven benefits, it needs to be administered by trained professionals and it is not suitable for routine, continuous, long-term monitoring. Dr Barrie Hayes-Gill and Dr John Crowe at The University of Nottingham recognised the need for a new technology that would fill these gaps.

One of the biggest obstacles in developing the fetal monitor was separating the baby's heart beat from the mother's signal. The team has successfully created a state-of-the-art device which can gauge both heart rates as well as fetal position. This unique home monitoring device could lead to a new approach in the management of pregnancy.

Dr Margaret Ramsay says it will play a key role in monitoring high-risk pregnancies. "For all these fetuses, the more we can monitor them, the greater the chance of us detecting that they are running into difficulties before it is too late to help them. This may involve urgent delivery of the fetus."

The device will be especially helpful in monitoring fetuses whose mothers have medical conditions like diabetes, autoimmune conditions such as systemic lupus erythematosus and Sjogren's syndrome and obstetric cholestasis. It will also be useful in monitoring fetuses identified as growing poorly or where it is suspected that the placenta is unhealthy and hence the fetus may become compromised due to lack of oxygen."

In England during 2004 and 2005 17 per cent of inpatient cases for women in NHS hospitals were due to complications of pregnancy or childbirth. By helping to detect potential problems with unborn babies early and monitoring expectant mothers in their own homes it is hoped the device could relieve the pressure on in-patient stays and reduce hospital costs. As well as spotting potential complications the new monitor can be used to provide reassurance and mother-baby bonding.
-end-
Notes to editors: The University of Nottingham is Britain's University of the Year (The Times Higher Awards 2006). It undertakes world-changing research, provides innovative teaching and a student experience of the highest quality. Ranked by Newsweek in the world's Top 75 universities, its academics have won two Nobel Prizes since 2003. The University is an international institution with campuses in the United Kingdom, Malaysia and China.

More information about Monica Healthcare Ltd can be found at www.monicahealthcare.com

More information is available from Barrie Hayes-Gill on +44 (0)115 951 5547 (University of Nottingham) or +44 (0)115 912 4540 (Monica Healthcare Ltd); or Dr Margaret Ramsay on +44 (0)115 8230677; or Media Relations Manager Lindsay Brooke in the University's Media and Public Relations Office on +44 (0)115 9515793, lindsay.brooke@nottingham.ac.uk

University of Nottingham

Related Mobile Phone Articles from Brightsurf:

Swirl power: how gentle body movement will charge your mobile phone
Scientists have discovered a way to generate electricity from nylon - the stretchy fabric used widely in sportswear and other shape-hugging apparel - raising hopes that the clothes on our backs will become an important source of energy.

Association of mobile phone location data indications of travel, stay-at-home mandates with COVID-19 infection rates in US
Anonymous mobile phone location data were used to examine travel and home dwelling time patterns before and after enactment of stay-at-home orders in US states to examine associations between changes in mobility and the COVID-19 curve.

Security gap allows eavesdropping on mobile phone calls
Calls via the LTE mobile network, also known as 4G, are encrypted and should therefore be tap-proof.

Some mobile phone apps may contain hidden behaviors that users never see
A team of cybersecurity researchers has discovered that a large number of cell phone applications contain hardcoded secrets allowing others to access private data or block content provided by users.

How secure are four and six-digit mobile phone PINs?
A German-American team of IT security researchers has investigated how users choose the PIN for their mobile phones and how they can be convinced to use a more secure number combination.

World's smelliest fruit could charge your mobile phone
Pungent produce packs an electrical punch. New method using world's 'most repulsive smelling fruit' could 'substantially reduce' the cost of energy storage.

LTE vulnerability: Attackers can impersonate other mobile phone users
Exploiting a vulnerability in the mobile communication standard LTE, also known as 4G, researchers at Ruhr-Universit├Ąt Bochum can impersonate mobile phone users.

A photo taken with a mobile phone to detect frauds in rice labelling
Including plastic that is undetectable by the consumer or distorting the quality of the product are some of the frauds facing the third most consumed cereal in the world: rice.

Mapping disease outbreaks in urban settings using mobile phone data
A new EPFL and MIT study into the interplay between mobility and the 2013 and 2014 dengue outbreaks in Singapore has uncovered a legal void around access to mobile phone data -- information that can prove vital in preventing the spread of infectious diseases.

Mobile phone data reveals non-market value of coastal tourism under climate change
Big data application is an emerging field in climate change adaptation.

Read More: Mobile Phone News and Mobile Phone Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.