Proton radiotherapy delivers more accurate cancer treatment, with less collateral damage

April 26, 2015

Barcelona, Spain: Radiotherapy using protons can deliver more accurate treatment to a tumour while reducing the dose to surrounding tissue. However, in mobile organs such as the lung, precise targeting of the dose is difficult. Now researchers have succeeded in making a model of breathing movement that allows for the precise measurement of narrow beams to a dummy tumour by simulating the motion and physical properties of the chest anatomy in a model, the 3rd ESTRO Forum in Barcelona, Spain, will hear today (Monday).

Dr Rosalind Perrin, from the Centre for Proton Therapy at the Paul Scherrer Institute, Villigen, Switzerland, will describe to the conference the method she and colleagues have developed to test the application of proton therapy to lung cancer, using a delivery technique called rescanning, which helps to mitigate the effect of motion, and to develop practical ways to implement it in the clinic for patient treatments.

"This involved experiments using an advanced breathing model of the patient, a so-called 'anthropomorphic phantom', with integrated measurement devices to accurately measure the dose distribution. We found that our rescanning technique worked well to overcome the effect of motion on the dose delivered to the tumour, and for tumour motions of up to 1 cm," she will say.

The model developed by the researchers was made up of a sphere representing a tumour moving within an inflating lung, enclosed in a rib cage complete with surrounding muscle and skin layers. The model can be programmed to move with breathing patterns specific to each patient. Radiation dosage was measured during movement, and the researchers found that the rescanning technique allowed the application of clinically acceptable dose distribution to the tumour, and only a minimal dose to surrounding tissues.

Scanning proton therapy is an emerging technology in cancer therapy, in which a narrow particle beam, consisting of accelerated hydrogen nuclei, is scanned through the tumour and administers highly targeted radiation to the cancer cells. Because protons have a relatively large mass, the beam delivers most of its radiation dose towards the end of its path in tissue, and thus proton therapy can be designed to limit dose to surrounding tissues. Furthermore, a proton beam only penetrates the tissue up to a given depth, determined by its energy. So, compared with conventional radiotherapy techniques, the therapy allows a maximal dose to the tumour, while reducing the dose elsewhere.

However, for mobile tumours in the liver or lung, organ and tumour motion deteriorates the dose distribution because there may be a rift between the radiation delivery time-line and the time-line of the tumour motion: the "interplay" effect. The researchers at the Paul Scherrer Institute have worked to overcome this problem by developing a new, state-of-the art delivery system, and the technology required by these advanced "motion mitigation" methods is now operational. The rescanning technique involves scanning the tumour several times by the proton beam.

"This makes it possible to average out the dose to the moving tumour, and also reduce the effect of motion on the dose delivered to it. Because of the sensitivity of the lung to radiation, as well as the proximity of the heart, oesophagus and spinal cord, it is particularly important to keep the radiation dose to surrounding tissues as low as possible in lung cancer," says Dr Perrin.

The next challenge for the researchers is to translate the technique into the clinic for the benefit of patients, with the aim of improving cancer radiotherapy while reducing side effects. However, cost remains a problem. "The cost-benefit of proton therapy is a hotly-debated topic amongst national healthcare bodies and insurers. But if we can show, through randomised clinical studies, that proton therapy is better for certain cancer types, this may influence politicians and insurance providers to make appropriate decisions. This is particularly important for cancer types with a poor outcome that are subject to motion, especially advanced-stage liver and lung cancers," Dr Perrin will conclude.

Professor Philip Poortmans, President of ESTRO, commented: "Proton therapy is currently attracting a lot of attention in the field of oncology as well as in the lay press. This study points out very accurately that a lot of work still has to be done before its applicability to most tumour sites will be broadly acceptable outside the field of clinical trials. The investigators focused on the challenge of the movement of the tumour within the patient's body, for example with a normal breathing cycle. The rescanning technique they describe, which compensates for tumour motion, averages out the delivered dose while keeping the dose to surrounding normal tissues at a low level. The next challenge will be to bring this novel technique to the point of clinical applicability."
-end-


European Society for Radiotherapy and Oncology (ESTRO)

Related Lung Cancer Articles from Brightsurf:

State-level lung cancer screening rates not aligned with lung cancer burden in the US
A new study reports that state-level lung cancer screening rates were not aligned with lung cancer burden.

The lung microbiome may affect lung cancer pathogenesis and prognosis
Enrichment of the lungs with oral commensal microbes was associated with advanced stage disease, worse prognosis, and tumor progression in patients with lung cancer, according to results from a study published in Cancer Discovery, a journal of the American Association for Cancer Research.

New analysis finds lung cancer screening reduces rates of lung cancer-specific death
Low-dose CT screening methods may prevent one death per 250 at-risk adults screened, according to a meta-analysis of eight randomized controlled clinical trials of lung cancer screening.

'Social smokers' face disproportionate risk of death from lung disease and lung cancer
'Social smokers' are more than twice as likely to die of lung disease and more than eight times as likely to die of lung cancer than non-smokers, according to research presented at the European Respiratory Society International Congress.

Lung cancer therapy may improve outcomes of metastatic brain cancer
A medication commonly used to treat non-small cell lung cancer that has spread, or metastasized, may have benefits for patients with metastatic brain cancers, suggests a new review and analysis led by researchers at St.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Lung transplant patients face elevated lung cancer risk
In an American Journal of Transplantation study, lung cancer risk was increased after lung transplantation, especially in the native (non-transplanted) lung of single lung transplant recipients.

Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.

Are you at risk for lung cancer?
This question isn't only for people who've smoked a lot.

Read More: Lung Cancer News and Lung Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.