Nav: Home

Scientists using high tech microscope find clues to an autoimmune disease

April 26, 2017

AURORA, Colo. (April 26, 2017) - Using a unique microscope capable of illuminating living cell structures in great detail, researchers at the University of Colorado Anschutz Medical Campus have found clues into how a destructive autoimmune disease works, setting the stage for more discoveries in the future.

The scientists were trying to visualize antibodies that cause neuromyelitis optica (NMO), a rare autoimmune disorder that results in paralysis and blindness. Using a custom STED (Stimulated Emission Depletion) microscope built at CU Anschutz, they were able to actually see clusters of antibodies atop astrocytes, the brain cell target of the autoimmune response in NMO.

"We discovered that we could see the natural clustering of antibodies on the surface of target cells. This could potentially correspond with their ability to damage the cells," said Professor Jeffrey Bennett, MD, PhD, senior author of the study and associate director of Translational Research at the Center for NeuroScience at CU Anschutz.

"We know that once antibody binds to the surface of the astrocyte, we are witnessing the first steps in the disease process."

When that domino effect begins, it's hard to stop. But Bennett said the ability to see the antibodies on the brain cells offers a chance to develop targeted therapies that do not suppress the body's immune system like current treatments for the disease do.

"By applying this novel approach we can see firsthand how these antibodies work," said the study's lead author, John Soltys, a current student in the Medical Scientist Training Program at CU Anschutz. "We are looking at the initiation of autoimmune injury in this disease."

The breakthrough was made possible with the STED microscope, a complex instrument that uses lasers to achieve extreme precision and clarity. It was built by physicist Stephanie Meyer, PhD, at CU Anschutz. This is the first time it has been used in a research project here.

"This would have been impossible to see with any kind of normal microscope," said study co-author Professor Diego Restrepo, PhD, director of the Center for NeuroScience. "We are inviting other scientists with research projects on campus to use the STED microscope."

According to Meyer, lower resolution microscopes are blurrier than the STED due to diffraction of light. But the STED's lasers illuminate a smaller area to acquire a higher resolution image. Unlike electron microscopes, STED users can see entire living cells at extremely high resolution, as they did in this study.

Restrepo said there are only a handful of STEDs in the nation and just one in Colorado.

The researchers said the discovery is the result of a unique partnership between clinical neurology, immunology and neuroscience coming together to solve a fundamental question of how antibodies can initiate targeted injury in an autoimmune disease.

"These are the building blocks that we can use to carry our research to the next level," Bennett said.

The study was published this week in Biophysical Journal.
-end-


University of Colorado Anschutz Medical Campus

Related Neuroscience Articles:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.
Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.
Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.
The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.
Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.
Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.
Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.
The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.
Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.
More Neuroscience News and Neuroscience Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.