Nav: Home

Scientists propose mechanism to describe solar eruptions of all sizes

April 26, 2017

From long, tapered jets to massive explosions of solar material and energy, eruptions on the sun come in many shapes and sizes. Since they erupt at such vastly different scales, jets and the massive clouds -- called coronal mass ejections, or CMEs -- were previously thought to be driven by different processes.

Scientists from Durham University in the United Kingdom and NASA now propose that a universal mechanism can explain the whole spectrum of solar eruptions. They used 3-D computer simulations to demonstrate that a variety of eruptions can theoretically be thought of as the same kind of event, only in different sizes and manifested in different ways. Their work is summarized in a paper published in Nature on April 26, 2017.

The study was motivated by high-resolution observations of filaments from NASA's Solar Dynamics Observatory, or SDO, and the joint Japan Aerospace Exploration Agency/NASA Hinode satellite. Filaments are dark, serpentine structures that are suspended above the sun's surface and consist of dense, cold solar material. The onset of CME eruptions had long been known to be associated with filaments, but improved observations have recently shown that jets have similar filament-like structures before eruption too. So the scientists set out to see if they could get their computer simulations to link filaments to jet eruptions as well.

"In CMEs, filaments are large, and when they become unstable, they erupt," said Peter Wyper, a solar physicist at Durham University and the lead author of the study. "Recent observations have shown the same thing may be happening in smaller events such as coronal jets. Our theoretical model shows the jet can essentially be described as a mini-CME."

Solar scientists can use computer models like this to help round out their understanding of the observations they see through space telescopes. The models can be used to test different theories, essentially creating simulated experiments that cannot, of course, be performed on an actual star in real life.

The scientists call their proposed mechanism for how these filaments lead to eruptions the breakout model, for the way the stressed filament pushes relentlessly at -- and ultimately breaks through -- its magnetic restraints into space. They previously used this model to describe CMEs; in this study, the scientists adapted the model to smaller events and were able to reproduce jets in the computer simulations that match the SDO and Hinode observations. Such simulations provide additional confirmation to support the observations that first suggested coronal jets and CMEs are caused in the same way.

"The breakout model unifies our picture of what's going on at the sun," said Richard DeVore, a co-author of the study and solar physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Within a unified context, we can advance understanding of how these eruptions are started, how to predict them and how to better understand their consequences."

The key for understanding a solar eruption, according to Wyper, is recognizing how the filament system loses equilibrium, which triggers eruption. In the breakout model, the culprit is magnetic reconnection -- a process in which magnetic field lines come together and explosively realign into a new configuration.

In stable conditions, loops of magnetic field lines hold the filament down and suppress eruption. But the filament naturally wants to expand outward, which stresses its magnetic surroundings over time and eventually initiates magnetic reconnection. The process explosively releases the energy stored in the filament, which breaks out from the sun's surface and is ejected into space.

Exactly which kind of eruption occurs depends on the initial strength and configuration of the magnetic field lines containing the filament. In a CME, field lines form closed loops completely surrounding the filament, so a bubble-shaped cloud ultimately bursts from the sun. In jets, nearby fields lines stream freely from the surface into interplanetary space, so solar material from the filament flows out along those reconnected lines away from the sun.

"Now we have the possibility to explain a continuum of eruptions through the same process," Wyper said. "With this mechanism, we can understand the similarities between small jets and massive CMEs, and infer eruptions anywhere in between."

Confirming this theoretical mechanism will require high-resolution observations of the magnetic field and plasma flows in the solar atmosphere, especially around the sun's poles where many jets originate -- and that's data that currently are not available. For now, scientists look to upcoming missions such as NASA's Solar Probe Plus and the joint ESA (European Space Agency)/NASA Solar Orbiter, which will acquire novel measurements of the sun's atmosphere and magnetic fields emanating from solar eruptions.
-end-


NASA/Goddard Space Flight Center

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.