Nav: Home

Study signals need to screen genes for stem cell transplants

April 26, 2017

Regenerative medicine using human pluripotent stem cells to grow transplantable tissue outside the body carries the promise to treat a range of intractable disorders, such as diabetes and Parkinson's disease.

However, a research team from the Harvard Stem Cell Institute (HSCI), Harvard Medical School (HMS), and the Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard has found that as stem cell lines grow in a lab dish, they often acquire mutations in the TP53 (p53) gene, an important tumor suppressor responsible for controlling cell growth and division.

Their research suggests that genetic sequencing technologies should be used to screen for mutated cells in stem cell cultures, so that cultures with mutated cells can be excluded from scientific experiments and clinical therapies. If such methods are not employed it could lead to an elevated cancer risk in those receiving transplants.

The paper, published online in the journal Nature on April, 26, comes at just the right time, the researchers said, as experimental treatments using human pluripotent stem cells are ramping up across the country.

"Our results underscore the need for the field of regenerative medicine to proceed with care," said the study's co-corresponding author Kevin Eggan, an HSCI Principal Faculty member and the director of stem cell biology for the Stanley Center. Eggan's lab in Harvard University's Department of Stem Cell and Regenerative Biology uses human stem cells to study the mechanisms of brain disorders, including amyotrophic lateral sclerosis, intellectual disability, and schizophrenia.

The research, the team said, should not discourage the pursuit of experimental treatments but instead be heeded as a call to screen rigorously all cell lines for mutations at various stages of development as well as immediately before transplantation.

"Our findings indicate that an additional series of quality control checks should be implemented during the production of stem cells and their downstream use in developing therapies," Eggan said. "Fortunately, these genetic checks can be readily performed with precise, sensitive, and increasingly inexpensive sequencing methods."

With human stem cells, researchers can recreate human tissue in the lab. This enables them to study the mechanisms by which certain genes can predispose an individual to a particular disease. Eggan has been working with Steve McCarroll, associate professor of genetics at Harvard Medical School and director of genetics at the Stanley Center, to study how genes shape the biology of neurons, which can be derived from these stem cells.

McCarroll's lab recently discovered a common, precancerous condition in which a blood stem cell in the body acquires a pro-growth mutation and then outcompetes a person's normal stem cells, becoming the dominant generator of his or her blood cells. People in whom this condition has appeared are 12 times more likely to develop blood cancer later in life. The study's lead authors, Florian Merkle and Sulagna Ghosh, collaborated with Eggan and McCarroll to test whether laboratory-grown stem cells might be vulnerable to an analogous process.

"Cells in the lab, like cells in the body, acquire mutations all the time," said McCarroll, co-corresponding author. "Mutations in most genes have little impact on the larger tissue or cell line. But cells with a pro-growth mutation can outcompete other cells, become very numerous, and 'take over' a tissue. We found that this process of clonal selection - the basis of cancer formation in the body - is also routinely happening in laboratories."

To find acquired mutations, the researchers performed genetic analyses on 140 stem cell lines--26 of which were developed for therapeutic purposes using Good Manufacturing Practices, a quality control standard set by regulatory agencies in multiple countries. The remaining 114 were listed on the NIH registry of human pluripotent stem cells.

"While we expected to find some mutations in stem cell lines, we were surprised to find that about five percent of the stem cell lines we analyzed had acquired mutations in a tumor-suppressing gene called p53," said Merkle.

Nicknamed the "guardian of the genome," p53 controls cell growth and cell death. People who inherit p53 mutations develop a rare disorder called Li-Fraumeni Syndrome, which confers a near 100 percent risk of developing cancer in a wide range of tissue types.

The specific mutations that the researchers observed are "dominant negative" mutations, meaning, when present on even one copy of P53, they are able to compromise the function of the normal protein, whose components are made from both gene copies. The exact same dominant-negative mutations are among the most commonly observed mutations in human cancers.

"These precise mutations are very familiar to cancer scientists. They are among the worst P53 mutations to have," said Sulagna Ghosh, a co-lead author of the study.

The researchers performed a sophisticated set of DNA analyses to rule out the possibility that these mutations had been inherited rather than acquired as the cells grew in the lab. In subsequent experiments, the Harvard scientists found that p53 mutant cells outperformed and outcompeted non-mutant cells in the lab dish. In other words, a culture with a million healthy cells and one p53 mutant cell, said Eggan, could quickly become a culture of only mutant cells.

"The spectrum of tissues at risk for transformation when harboring a p53 mutation include many of those that we would like to target for repair with regenerative medicine using human pluripotent stem cells," said Eggan. Those organs include the pancreas, brain, blood, bone, skin, liver and lungs.

However, Eggan and McCarroll emphasized that now that this phenomenon has been found, inexpensive gene-sequencing tests will allow researchers to identify and remove from the production line cell cultures with concerning mutations that might prove dangerous after transplantation.

The researchers point out in their paper that screening approaches to identify these p53 mutations and others that confer cancer risk already exist and are used in cancer diagnostics. In fact, in an ongoing clinical trial that is transplanting cells derived from induced pluripotent stem cells (iPSCs), gene sequencing is used to ensure the transplanted cell products are free of dangerous mutations.
-end-
This work was supported by the Harvard Stem Cell Institute, the Stanley Center for Psychiatric Research, The Rosetrees Trust and The Azrieli Foundation, Howard Hughes Medical Institute, the Wellcome Trust, the Medical Research Council, and the Academy of Medical Sciences, and by grants from the NIH (HL109525, 5P01GM099117, 5K99NS08371, HG006855, MH105641).

Harvard University

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.