Nav: Home

Temple researchers uncover vital role for mitochondrial calcium exchange in heart function

April 26, 2017

(Philadelphia, PA) - Scientists have long thought that calcium transport into mitochondria - the powerhouses of cells - is a key signal linking cardiac workload, or how hard the heart pumps, with energy production. Studies at the Lewis Katz School of Medicine at Temple University (LKSOM) and elsewhere have shown the importance of this pathway during stress, but they have also questioned the dogma that mitochondrial calcium exchange is necessary for normal cardiac function. Now, in a major breakthrough, LKSOM researchers show that the exit of calcium from mitochondria serves a critical role in heart function and may represent a powerful therapeutic approach to limit heart disease.

Using a newly developed mutant mouse model, researchers led by John W. Elrod, PhD, Assistant Professor in the Center for Translational Medicine at LKSOM, and senior investigator on the new study, demonstrate that a mitochondrial transporter encoded by the gene Slc8b1 (referred to as the mitochondrial sodium-calcium exchanger, or NCLX) is necessary for proper heart function. Without NCLX, animals suffer sudden death. The study, published online April 26 by the journal Nature, is the first to look at the necessity of mitochondrial calcium efflux in living animals.

Mitochondrial calcium exchange - the flow of calcium in and out of the energy-generating organelle - is fundamental to both cell death and pro-energetic signaling pathways. "We know from our previous work that the inhibition of calcium uptake results in a loss of stress response signaling in the heart," Dr. Elrod explained. "We found that mitochondrial calcium uptake was required for the heart to beat harder in response to stress and that excessive mitochondrial calcium uptake could trigger the death of heart cells. But those same animals had normal heart function in the absence of stress, suggesting the existence of a separate homeostatic, basal mechanism of calcium signaling."

To circumvent possible alternative mitochondrial calcium uptake pathways, Dr. Elrod and colleagues developed a conditional knockout mouse model, in which the NCLX gene was deleted after treatment with the drug tamoxifen, enabling mice to reach adulthood before the knockout was induced.

"By deleting NCLX, we were able to determine the necessity of mitochondrial calcium efflux," Dr. Elrod said.

When the gene was switched off in adult mice, the animals began to suddenly die from massive heart failure. Examination of cardiomyocytes from the animals revealed swollen and dysfunctional mitochondria, a sign of mitochondrial permeability transition pore (MPTP) activation, a mechanism known to be activated by calcium overload and to induce cell death. By genetically inhibiting MPTP activation, the researchers were able to rescue the NCLX knockout mice from death and prove the essential nature of mitochondrial calcium exchange in the heart.

Dr. Elrod and colleagues then explored the effects of augmenting NCLX expression in the mouse heart using genetic techniques. As anticipated, NCLX overexpression increased mitochondrial calcium efflux. It also prevented cell death in mice that suffered heart attacks and protected against the progression of heart failure by reducing reactive oxygen species production and limiting cardiomyocyte death and fibrosis (tissue stiffening).

"Targeting NCLX was effective in preventing cardiomyocyte death and maintaining heart function during the progression of heart failure," Dr. Elrod said. "Our findings suggest that mitochondrial calcium efflux is a promising therapeutic target, with the potential to lessen the severity of cardiac disease states."

Dr. Elrod plans to investigate NCLX activation further. Understanding its regulation at the molecular level could help identify additional mechanistic targets for the development of novel drug therapies.
-end-
Other investigators contributing to the new study include Timothy S. Luongo, a student in the Elrod lab who has recently become a postdoctoral fellow at the University of Pennsylvania; Jonathan P. Lambert, Mary Nwokedi, Alyssa A. Lombardi, Santhanam Shanmughapriya, Devin Kolmetzky, Erhe Gao, and Muniswamy Madesh, Center for Translational Medicine, Department of Pharmacology,LKSOM; Xiongwen Chen, Polina Gross, and Steven R. Houser, Center for Cardiovascular Research, Department of Physiology, LKSOM; April C. Carpenter, Department of Health and Exercise Physiology, Ursinus College; Jop H. van Berlo, Department of Medicine, University of Minnesota, Minneapolis; Emily Tsai, Division of Cardiology, Department of Medicine, Columbia University College of Physicians & Surgeons, New York; and Jeffery D. Molkentin, Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute.

The research was supported in part by National Institutes of Health grants R01 HL123966, P01 DA037830 sub-8614 and American Heart Association grants 14SDG18910041, 15PRE25080299, 16PRE31030038, and 17PRE33460423.

About Temple Health

Temple University Health System (TUHS) is a $1.6 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with the Lewis Katz School of Medicine at Temple University.

The Lewis Katz School of Medicine (LKSOM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates approximately 840 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, the Katz School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, LKSOM is among the top 10 most applied-to medical schools in the nation.

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System (TUHS) and by the Katz School of Medicine. TUHS neither provides nor controls the provision of health care. All health care is provided by its member organizations or independent health care providers affiliated with TUHS member organizations. Each TUHS member organization is owned and operated pursuant to its governing documents.

Temple University Health System

Related Heart Failure Articles:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication
Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.
Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.
Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population
Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.
Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.
Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.
Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.
How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.
Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.
More Heart Failure News and Heart Failure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.