Nav: Home

Sun's eruptions might all have same trigger

April 26, 2017

Large and small scale solar eruptions might all be triggered by a single process, according to new research that leads to better understanding of the Sun's activity.

Researchers at Durham University, UK, and NASA's Goddard Space Flight Center, USA, used 3D computer simulations to show a theoretical link between large and small scale eruptions that were previously thought to be driven by different processes.

They looked at the mechanism behind coronal jets - relatively small bursts of plasma (hot gas) from the Sun - and much larger-scale coronal mass ejections (CMEs), where giant clouds of plasma and magnetic field are blown into space at high speed.

Both types of eruptions were known to involve snake-like filaments of dense plasma low in the Sun's atmosphere, but until now how they erupted at such vastly different scales was unclear.

The researchers discovered that the filaments in jets are triggered to erupt when the magnetic field lines above them break and rejoin - a process known as magnetic reconnection.

The same process was previously known to explain many CMEs.

The strength and structure of the magnetic field around the filament determines the type of eruption that occurs, the researchers said.

Their findings are published in the journal Nature.

Understanding solar eruptions is important as their electromagnetic radiation can disrupt radio transmissions and satellite communications, and they can eject high-energy electrically charged particles that can potentially endanger astronauts.

CMEs also help create the spectacular light shows, or aurorae, at both of the Earth's magnetic poles, as charged particles accelerated by the CME collide with gases such as oxygen and nitrogen in Earth's atmosphere.

The new study provides theoretical support for previous observational research which suggested that coronal jets are caused in the same way as CMEs.

The Durham-led researchers said their latest findings covered all solar eruptions from the largest CMEs to the smallest coronal jets.

Lead author Dr Peter Wyper, Royal Astronomical Society Fellow, in the Department of Mathematical Sciences, Durham University, said: "It was previously thought that there were different drivers for the varying scales of eruptions from the Sun, but our research provides a theoretical universal model for this activity, which is very exciting.

"A greater understanding of solar eruptions at all scales could ultimately help in better predicting the Sun's activity.

"Large-scale coronal mass ejections, where huge amounts of solar plasma, radiation and high energy particles are being released, can influence the space around them, including the space near to Earth.

"They can interfere with satellite communications, for example, so it is beneficial for us to be able to understand and monitor this activity."

The research was funded by the Royal Astronomical Society and NASA. The computer simulations were carried out at NASA's Center for Climate Simulation.

The scientists call their proposed mechanism for how filaments lead to eruptions the breakout model, because of the way the stressed filament pushes relentlessly at - and ultimately breaks through - its magnetic restraints into space.

Co-author Dr Richard DeVore, a solar physicist at NASA's Goddard Space Flight Center, said: "The breakout model unifies our picture of what's going on at the Sun.

"Within a unified context, we can advance understanding of how these eruptions are started, how to predict them, and how to better understand their consequences."

In future, the researchers plan to use further simulations to test their model for solar eruptions in different magnetic configurations, and to study how the swarms of high energy particles, which can affect satellites and astronauts, are launched into space by these events.

Confirming the theoretical mechanism will require high-resolution observations of the magnetic field and plasma flows in the solar atmosphere, especially around the Sun's poles where many jets originate -- data that is currently not available.

For now, scientists are looking to upcoming missions such as NASA's Solar Probe Plus and the joint European Space Agency/NASA Solar Orbiter, which will acquire novel measurements of the Sun's atmosphere and magnetic fields emanating from solar eruptions.
-end-


Durham University

Related Magnetic Field Articles:

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
Researchers discover link between magnetic field strength and temperature
Researchers recently discovered that the strength of the magnetic field required to elicit a particular quantum mechanical process corresponds to the temperature of the material.
More Magnetic Field News and Magnetic Field Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab