Nav: Home

Stanford scientists assemble working human forebrain circuits in a lab dish

April 26, 2017

Peering into laboratory glassware, Stanford University School of Medicine researchers have watched stem-cell-derived nerve cells arising in a specific region of the human brain migrate into another brain region. This process recapitulates what's been believed to occur in a developing fetus, but has never previously been viewed in real time.

The investigators saw the migrating nerve cells, or neurons, hook up with other neurons in the target region to form functioning circuits characteristic of the cerebral cortex.

These observations showcase neuroscientists' newfound ability to monitor, assemble and manipulate so-called neural spheroids, generated from human induced pluripotent stem cells, to study the normal development of the human forebrain during late pregnancy.

"We've never been able to recapitulate these human-brain developmental events in a dish before," said the study's senior author, Sergiu Pasca, MD, assistant professor of psychiatry and behavioral sciences. "The process happens in the second half of pregnancy, so viewing it live is challenging. Our method lets us see the entire movie, not just snapshots."

The findings, and the techniques used to obtain them, carry potential for the personalized study of individuals' psychiatric disorders. In the study, to be published online April 26 in Nature, the scientists were able to attribute, for the first time, defects in neuronal migration to Timothy syndrome, a rare condition that predisposes people to autism, epilepsy and cardiac malfunction. Postdoctoral scholars Fikri Birey, PhD, Jimena Andersen, PhD, and Chris Makinson, PhD, share lead authorship.

The need for 3-D models

Culturing neurons in a lab dish is old hat. But the two-dimensional character of life lived atop a flat glass coverslip doesn't sit well with cells designed for three-dimensional existence. Neurons cultured in monolayers mature only partially, tend to die fairly quickly and interact suboptimally.

In a 2015 study, Pasca and his colleagues described their method for producing neural spheroids. Neural precursor cells generated from iPS cells are placed in culture dishes whose bottoms are coated to make it impossible for neurons to attach. The cells float freely in a nutrient-rich broth, ultimately developing into hundreds of almost perfectly round balls approaching 1/16 of an inch in diameter and consisting of over 1 million cells each. These neurons can live for up to two years, and they mature fully.

The spheroids created in the 2015 study recapitulated the human cerebral cortex's six-layer-thick architecture, and the neurons they contained were of the type that arise in and dominate the cerebral cortex. They're called glutamatergic neurons because they secrete the excitatory chemical glutamate.

But the cerebral cortex's glutamatergic neurons don't remain alone for long. During fetal development, they are eventually joined by neurons of another type that originate in a slightly deeper region of the developing forebrain. These neurons secrete a neuromodulatory -- and usually inhibitory -- substance called GABA, so they're deemed GABAergic. It's known that GABAergic cells migrate from their region of origin to the cortex, where they interlace with its resident glutamatergic cells and with one another to form the circuitry responsible for the brain's most advanced cognitive activities. But no one had been able to watch this happen with human cells in a dish.

In the new study, the researchers separated their spheroids into two batches and coaxed them to become different regions of the human brain. They cultured one batch in a medium that induces cortexlike spheroids containing glutamatergic neurons. They placed the second batch in dishes whose broth steers the spheroids toward resembling the underlying brain region where GABAergic neurons originate.

Then, the investigators juxtaposed the two distinct types of spheroids. Within three days, the two spheroids fused, and GABAergic neurons from one spheroid began migrating into the glutamatergic-neuron-rich spheroid. Their migration pattern, the scientists noted, was halting: They would move toward the target spheroid for a little while, then stop for an extended period, then start up again in stuttering jumps.

On reaching their destination, the GABAergic travelers underwent a transformation, sprouting dendrites -- branching, foliage-like "tails" that receive inputs from other neurons -- and forming working connections with the glutamatergic neurons. Electrophysiological tests revealed that GABAergic and glutamatergic neurons were successfully forming circuits and signaling to one another.

Insight into Timothy syndrome

The scientists had access to tissue samples from patients with Timothy syndrome, an extremely rare and historically lethal condition caused by a mutation in the gene coding for a type of calcium channel -- a protein containing a pore that responds to different voltage levels by opening or closing, respectively permitting or blocking the flow of calcium across otherwise impermeable membranes. Such calcium channels are essential to many cellular processes. Timothy syndrome patients' severe cardiac abnormalities once spelled ultra-short life expectancies, but now can be ameliorated with pacemakers. However, survivors usually have autism and frequently have epilepsy.

The investigators generated both types of neural spheroids from their Timothy-syndrome tissue samples, fused them and watched to see what would happen. What they saw was this: The GABAergic neurons, which seemed to develop normally, exhibited aberrant start-and-stop migration patterns. Their forward movements were more frequent, but far less efficient, than those of normal neurons.

The mutation behind Timothy syndrome increases the likelihood that the calcium channel for which it codes will let calcium ions flow through it. So, the researchers reasoned, a drug impeding the channel's activity might reverse the aberration. Indeed, two different drugs that block this type of calcium channel restored normal migratory activity to the Timothy-syndrome-derived GABAergic neurons.

Diverse variants in the same gene responsible for Timothy syndrome are associated with schizophrenia, other forms of autism spectrum disorder and bipolar disorder. Pasca said he suspects these variants may affect GABAergic neurons' integration with cortical glutamatergic neurons, resulting in a cognition-altering imbalance between excitation and inhibition in the cortex and laying the groundwork for these disorders.

"Our method of assembling and carefully characterizing neuronal circuits in a dish is opening up new windows through which we can view the normal development of the fetal human brain," said Pasca. "More importantly, it will help us see how this goes awry in individual patients."

Stanford's Office of Technology Licensing has filed for a patent on the intellectual property involving the generation of brain-region-specific neural spheroids and their assembly for studying development and disease.
Other Stanford study co-authors are postdoctoral scholars Saiful Islam, PhD, and Nina Huber, PhD; senior research scientists Nancy O'Rourke, PhD, and Wu Wei, PhD; high school lab intern Nicholas Thom; Lars Steinmetz, PhD, professor of genetics; Jonathan Bernstein, MD, PhD, associate professor of pediatrics; Joachim Hallmayer, MD, professor of psychiatry and behavioral sciences; and John Huguenard, PhD, professor of neurology and of neurosurgery.

The study was funded by the National Institutes of Health (grants R01MH100900, R01MH100900, R01MH107800 and P01HG00020526), the California Institute for Regenerative Medicine, the MQ Foundation, the Donald E. and Delia B. Baxter Foundation, the Kwan Research Fund, the Stanford Child Research Health Institute, the Wishes for Elliot Foundation, a Walter V. and Idun Berry Postdoctoral Fellowship, the Stanford School of Medicine Dean's Office, the UC-San Francisco Program for Breakthrough Biomedical Research and the Sandler Foundation.

Stanford's Department of Psychiatry and Behavioral Sciences and the Stanford Center for Sleep Sciences and Medicine also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit

Print media contact: Bruce Goldman at (650) 725-2106 (
Broadcast media contact: Becky Bach at (650) 724-2454 (

Stanford University Medical Center

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.