Nav: Home

Penn researchers quantify the changes that lightning inspires in rock

April 26, 2017

Benjamin Franklin, founder of the University of Pennsylvania, is believed to have experimented with lightning's powerful properties using a kite and key, likely coming close to electrocuting himself in the process.

In a new set of experiments at Penn, researchers have probed the power of lightning in a less risky but much more technologically advanced fashion.

Chiara Elmi, a postdoctoral researcher in Penn's Department of Earth and Environmental Science in the School of Arts & Sciences, led the work, which used a suite of techniques to examine a fulgurite, a thin layer of glass that forms on the surface of rock when lightning hits it. Among other findings, the study discovered that, based on the crystalline material in the sample, the minimum temperature at which the fulgurite formed was roughly 1,700 degrees Celsius.

"People have been using morphological and chemical approaches to study rock fulgurites, but this was the first time a rock fulgurite was classified from a mineralogical point of view," Elmi said. "I was able to adapt an approach that I've used before to study the effects of meteorite impact in rocks and sediments to analyze a tiny amount of material in order to understand the phase transitions that occur when a lightning hits a rock."

Elmi collaborated on the work with senior author Reto Gieré, professor and chair of the Department of Earth and Environmental Science, along with the department's Jiangzhi Chen, a postdoctoral researcher, and David Goldsby, an associate professor.

Their paper will be published in the journal American Mineralogist.

In a study published last year, Gieré characterized a rock fulgurite found in southern France, finding that the lightning bolt that hit it transformed the layer of rock beneath the fulgurite on the atomic level, producing tell-tale structures called shock lamellae.

The team wanted to pursue a different line of study in the new work.

"In this case," Gieré said, "we instead wanted to study the glass layer in more detail to find out what the minerals present could tell us about the temperature of lightning."

To do so, Elmi performed an X-ray diffraction analysis, which collects information about the way that X-rays interact with crystalline materials to infer the mineral content of a given sample. The challenge in this instance, however, was that a typical X-ray diffraction analysis requires roughly a gram of material, and the quantity of the 10-micrometer thick fulgurite was not nearly that substantial.

To adapt the technique for a smaller quantity of sample, Elmi put the material in a narrow, rotating capillary tube and adjusted the diffraction optics to align, concentrate and direct the X-ray beam toward the sample. The analysis of the fulgurite revealed the presence of glass as well as cristobalite, a mineral with the same chemical composition of quartz but possessing a distinct crystal structure. Cristobalite only forms at very high temperature, and the glass indicated that the top layer of granite melted during the lightning strike. Elmi's analysis enabled her to quantify the glass and the residual minerals in a rock fulgurite for the first time.

"These two signatures indicate a system that received a shock of high temperature," Elmi said. "This analysis also indicates the minimal temperature you have to create the glass because cristobalite forms around 1,700 Celsius, so you know that this temperature was achieved when the lightning hit the rock."

The measured temperature of lightning in the air is in fact much higher -- measured at around 30,000 degrees Celsius -- but this analysis indicates that the rock itself was raised from ambient temperatures to at least 1,700 Celsius.

The team performed additional analyses on the fulgurite sample. They found organic material in the sample, indicating that the lightning burned lichen or moss growing on the surface of the rock and then trapped it inside the material.

"This is an extremely fast event," Gieré said. "The rock heats up very quickly and also cools down very quickly. That traps gases in the glass and some of these gases were formed by the combustion of organic material."

In future studies, the team hopes to develop a complete model of what happens to rocks during a lightning strike, incorporating chemical, physical, biological and mineralogical observations. They note that people like Franklin who experience near-misses with lightning are lucky indeed.

"It's amazing that a bolt of lightning can turn granite molten and completely change its structure, yet some people survive lightning strikes," said Gieré.
-end-


University of Pennsylvania

Related Glass Articles:

Glass tables can cause life-threatening injuries
Faulty glass in tables can cause life-threatening injuries, according to a Rutgers study, which provides evidence that stricter federal regulations are needed to protect consumers.
The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.
Experimental study of how 'metallic glass' forms challenges paradigm in glass research
Unlike in a crystal, the atoms in a metallic glass are not ordered when the liquid solidifies.
On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.
Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.
Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.
Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.
New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.
In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.
New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?
More Glass News and Glass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.