Nav: Home

Proof of water wires motivated by a biological water channel

April 26, 2018

Aquaporins are proteins that serve as water channels to regulate the flow of water across biological cell membranes. They also remove excess salt and impurities in the body, and it is this aspect that has led to much interest in recent years in how to mimic the biochemical processes of aquaporins potentially for water desalination systems.

An international team of researchers co-led by Georges Belfort has discovered water, in the form of "water wires," contained in another molecule--the imidazole--a nitrogen-based organic compound that could be used as a potential building block for artificial aquaporins. The findings were recently published in Science Advances by the American Association for the Advancement of Science. Belfort is Institute Professor and professor of chemical and biological engineering at Rensselaer Polytechnic Institute.

Belfort's colleague, Mihail Barboiu, a research leader at the European Membranes Institute (EMI) in France, has synthesized and studied the dynamics of a ring structure of the imidazole embedded in a supported lipid bilayer (i.e., in a synthetic model of a biological membrane surrounding a cell). EMI operates under the auspices of several organizations, including France's National Center for Scientific Research (abbreviated CNRS in French).

X-ray studies by Barboiu and dynamic computer simulations by CNRS researcher Marc Baaden show that the imidazole's ring structure makes the molecule an ideal candidate to learn about how artificial aquaporins could be developed. In theory, assembled imidazole molecules act like an aquaporin by allowing water molecules to enter and possibly flow through the center of the ring structure while keeping out other molecules.

Still, there was no direct proof that water existed inside the imidazole water channel. To find out, Barboiu enlisted the help of Belfort and Poul Petersen, assistant professor of chemistry at Cornell University.

Through their experimental studies, Belfort and Petersen have found that not only does water exist in the imidazole water channel, but also that the imidazole ring construct induces the water molecules to self-assemble into a highly oriented linear chain structure--or what the researchers have dubbed "water wires."

"For the first time, we have made a direct observation of this unique water structure inside a synthetic water channel that mimics an aquaporin," Belfort said.

Belfort and his colleagues also discovered that the chirality of the imidazole molecules orients the water molecules and could increase the permeability of water through the water channel compared with achiral (i.e., not chiral) imidazole molecules that they also assembled. Chirality happens when a mirror image of an object is not superimposable--for example, your left and right hand.

In the case of the imidazole molecule, its chirality depends on the way that the groups of atoms in a molecule are organized. As Belfort explained, the chiral imidazole atoms can be seen as spokes on a bicycle wheel that cannot be superimposed on the "spokes" of an imidazole that is achiral.

"If you place several of these rings on top of each other like a pile of pancakes, the center (the 'axel') of the spokes holds the water molecules and enables them to connect with one another in an ordered way to form a water wire," he said. "Our results also showed that the water wire changed its orientation when imidazole chirality changes, further confirming that the chiral shape of the imidazole controls how the water behaves."

In their study, the researchers used artificial water channels that they created from imidazole self-assembled structures inside lipid bilayers, thin membranes that form a continuous barrier around cells. The imidazole building blocks were synthesized by Barboiu and his group in France. Belfort's research group then assembled the lipid bilayers to contain the imidazole structures.

Belfort's team used a quartz crystal microbalance (QCM) to measure the assembly and water content. Researchers use QCM to measure small mass changes on a vibrating quartz crystal. The lipids containing the water wire structures were then carried to Cornell by Mirco Sorci, a research associate in Belfort's lab, to further analyze the presence of the water wire and its orientation, using a special instrument that measures hydrogen bonds between water molecules called a sum frequency generation spectrometer.
-end-
About Rensselaer Polytechnic Institute

Rensselaer Polytechnic Institute, founded in 1824, is America's first technological research university. For nearly 200 years, Rensselaer has been defining the scientific and technological advances of our world. Rensselaer faculty and alumni represent 86 members of the National Academy of Engineering, 17 members of the National Academy of Sciences, 25 members of the American Academy of Arts and Sciences, 8 members of the National Academy of Medicine, 8 members of the National Academy of Inventors, and 5 members of the National Inventors Hall of Fame, as well as 6 National Medal of Technology winners, 5 National Medal of Science winners, and a Nobel Prize winner in Physics. With 7,000 students and nearly 100,000 living alumni, Rensselaer is addressing the global challenges facing the 21st century--to change lives, to advance society, and to change the world. To learn more, go to http://www.rpi.edu.

Contact: newsmedia@rpi.edu

Visit the Rensselaer research and discovery blog: http://approach.rpi.edu

Follow us on Twitter: http://www.twitter.com/RPInews

Rensselaer Polytechnic Institute

Related Water Molecules Articles:

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future
Feng Lin, an assistant professor of chemistry in the Virginia Tech College of Science, is focusing on energy storage and conversion research.
How a crystalline sponge sheds water molecules
How does water leave a sponge? In a new study, scientists answer this question in detail for a porous, crystalline material made from metal and organic building blocks -- specifically, cobalt(II) sulfate heptahydrate, 5-aminoisophthalic acid and 4,4'-bipyridine.
Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Liquid water is more than just H2O molecules
Skoltech scientists in collaboration with researchers from the University of Stuttgart showed that the concentration of short-lived ions (H3O+ and OH-) in pure liquid water is much higher than that assumed to evaluate the pH, hence significantly changing our understanding of the dynamical structure of water.
'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
Unique structural fluctuations at ice surface promote autoionization of water molecules
Hydrated protons at the surface of water ice are of fundamental importance in a variety of physicochemical phenomena on earth and in the universe.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
More Water Molecules News and Water Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.