Fish growth changes enhanced by climate change

April 27, 2007

Changes in growth rates in some coastal and long-lived deep-ocean fish species in the south west Pacific are consistent with shifts in wind systems and water temperatures, according to new Australian research published in the United States this week.

"We have drawn correlations between the growth of fish species related to their environmental conditions - faster growth in waters above a depth of 250 metres and slower rates of growth below 1,000 metres," says lead author, Dr Ron Thresher.

"These observations suggest that global climate change has enhanced some elements of productivity of shallow-water stocks but at the same time reduced the productivity and possibly the resilience of deep water stocks," he says.

A biological oceanographer with CSIRO's Wealth from Oceans Research Flagship, Dr Thresher said the research - published in the latest edition of the US science journal, Proceedings of the National Academy of Sciences - is based on the examination of fish earbones, or otoliths, which show similar characteristics to the growth rings used to date the age of trees. The work was done in collaboration with the Victorian Marine and Aquatic Fisheries Research Institute, which has specialist skills in analysing otoliths.

Water temperatures have been obtained from a 60-year-long record at Maria Island on the Tasmanian east coast, and using 400-year-old deep-ocean corals to measure temperate at depth.

Dr Thresher said populations of large marine species are widely subject to two major stressors - commercial fishing and climate change. Heavy exploitation increases the sensitivity of species to environmental effects and could be magnifying the effects of long-term climate change and short-term climate variability on the viability of some species.

He said correlations for long-lived shallow and deep-water species suggest that water temperatures have been a primary factor in determining juvenile growth rates in the species examined - Banded morwong, redfish, Jackass Morwong, Spiky, black, smooth and Warty Oreo and Orange roughy. Because of the pervasive effect of temperature on the physiology and growth of marine animals, it was likely that similar effects would be seen in many other species.

The science team examined 555 specimens ranging in age from two to 128 years, with birth years from 1861 to 1993.

Growth rates of a coastal species, juvenile morwong, in the 1990s were 28.5 per cent faster than at the beginning of the period under assessment in the mid-1950s. By comparison, juvenile oreos, a species found at depths of around 1,000 metres, were growing 27.9 per cent slower than in the 1860s. There was no or little change in the growth rates of species found between 500 and 1,000 metres.

Growth rates of the juveniles of the deep-water species all began decreasing well before the onset of commercial fishing.

Dr Thresher said slower growth in fishes has been correlated with a variety of life history traits - from higher mortality to reduced food availability and increased age or smaller size at sexual maturity.

He said comparisons of historical and modern oceanographic data indicate temperature trends very similar to the apparent changes in growth rates. In the south west Pacific east of Tasmania sea surface temperatures have risen nearly two degrees, based on the results of a monitoring program at Maria Island. Coinciding with this has been a southward shift in South Pacific zonal winds which has strengthened the warm, poleward-flowing East Australian Current.

"Modelling suggests that, with increasing global warming, temperatures at intermediate depths are likely to rise near-globally," Dr Thresher said. "This could mean that over the course of time, the decrease in growth rates for the deep-water species could slow or even be reversed," Dr Thresher said.
-end-
The paper: Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish, was authored by Dr Thresher, Dr Tony Koslow, now of the Scripps Institute of Oceanography, Dr A.K. Morison, now at the Bureau of Resource Sciences, and Dr David Smith, now of CSIRO.

It follows the recent release of a report for the Australian Greenhouse Office by the Wealth from Oceans Flagship. See; 'Climate's Challenge to Marine Life in a Future Ocean' at: http://www.csiro.au/news/ps2yg.html

CSIRO Australia

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.