Nav: Home

Early brain activity sheds new light on the neural basis of reading

April 27, 2009

Most people are expert readers, but it is something of an enigma that our brain can achieve expertise in such a recent cultural invention, which lies at the interface between vision and language. Given that the first alphabetic scripts are thought to have been invented only around four to five thousand years it is unlikely that enough time has elapsed to allow the evolution of specialized parts of the brain for reading. While neuroimaging techniques have made some progress in understanding the neural underpinning of this essentially cultural skill, the exact unfolding of brain activity has remained elusive.

Now, a better understanding of the brain basis of reading has been reported in research published in the open-access, peer-reviewed journal PLoS ONE. The research was led by Piers Cornelissen, Morten Kringelbach, Ian Holliday and Peter Hansen from the Universities of York, Oxford, Aston, and Birmingham UK, and was funded by the Wellcome Trust. The authors showed very early interactions between the vision and language domains during reading, with the speech motor areas of the brain (inferior frontal gyrus) being active at the same time (after a seventh of a second) as the orthographic word-form is being resolved within a brain region called the fusiform gyrus. This finding challenges the conventional view of a temporally serial processing sequence for reading in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.

This finding has a potentially important clinical application in relation to developmental dyslexia (affecting between 15-30 million people in the US alone) and those with acquired reading disabilities through injury or disease. A better understanding of normal reading processes could potentially help these individuals.

The research team used a neuroimaging method called magnetoencephalography (MEG) at Aston University, UK. This is an advanced neuroscientific tool, which offers both excellent temporal (in milliseconds) and spatial (in millimetres) resolution of whole brain activity. Because the researchers were primarily interested in the highly automatized processing of words, they used an implicit task that required participants to monitor the colour of a small red cross and to press a button as soon as the colour changed. This was interspersed with words, consonant strings and faces that were shown for 300 ms, but which were not important to solve the task.

The authors found key differences in the early brain activity of normal adults when they were reading words compared to reading consonant strings and seeing faces. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100-250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at ~130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at ~115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at ~140 ms, at a location coincident with the fMRI-defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus.

The left inferior frontal gyrus is located in the front of the brain. This is a key region of the language brain and lesions can lead to the inability to articulate words. In the context of the experiment, the inferior frontal gyrus appears to play a key role integrating the visual and language aspects of reading.

Reading problems are common. Further research could identify whether the present finding of early and specific activity in inferior frontal gyrus are affected in individuals with developmental dyslexia. The present paradigm could eventually provide opportunities for early identification of those at risk.
-end-
Contact:
Press officer, University of York
Email: pressoffice@york.ac.uk
Tel: +44 1904 432029

Citation: Cornelissen PL, Kringelbach ML, Ellis AW, Whitney C, Holliday IE, et al. (2009) Activation of the Left Inferior Frontal Gyrus in the First 200 ms of Reading: Evidence from Magnetoencephalography (MEG). PLoS ONE 4(4): e5359. doi:10.1371/journal.pone.0005359

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://plosone.org/doi/pone.0005359

Disclaimer

This press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

PLOS

Related Brain Activity Articles:

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.
Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.
Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.
Your brain activity can be used to measure how well you understand a concept
As students learn a new concept, measuring how well they grasp it has often depended on traditional paper and pencil tests.
Altered brain activity in antisocial teenagers
Teenage girls with problematic social behavior display reduced brain activity and weaker connectivity between the brain regions implicated in emotion regulation.
Gender impacts brain activity in alcoholics
Compared to alcoholic women, alcoholic men have more diminished brain activity in areas responsible for emotional processing (limbic regions including the amygdala and hippocampus), as well as memory and social processing (cortical regions including the superior frontal and supramarginal regions) among other functions.
Light, physical activity reduces brain aging
Incremental physical activity, even at light intensity, is associated with larger brain volume and healthy brain aging.
Measuring brain activity in milliseconds possible through new research
Researchers from King's College London, Harvard and INSERM-Paris have discovered a new way to measure brain function in milliseconds using magnetic resonance elastography (MRE).
Autism: Brain activity as a biomarker
Researchers from J├╝lich, Switzerland, France, the Netherlands, and the UK have discovered specific activity patterns in the brains of people with autism.
New MRI sensor can image activity deep within the brain
MIT researchers have developed an MRI-based calcium sensor that allows them to peer deep into the brain.
More Brain Activity News and Brain Activity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.