Nav: Home

New study overturns orthodoxy on how macrophages kill bacteria

April 27, 2009

CHAMPAIGN, Ill. -- For decades, microbiologists assumed that macrophages, immune cells that can engulf and poison bacteria and other pathogens, killed microbes by damaging their DNA. A new study from the University of Illinois disproves that.

The study, published in the journal PLoS ONE, shows that macrophages focus their most potent poisons, known as reactive oxygen species (ROS), on targets outside the cytoplasm.

Macrophages are voracious eaters that "swallow" cellular debris and invading organisms. They kill microbes with ROS. All aerobic cells inadvertently produce ROS that can, if left unchecked, damage DNA and other cellular components and cause cell death.

Bacteria and animal cells contain special enzymes, called superoxide dismutases, which neutralize an important ROS, called superoxide.

Macrophages have harnessed these lethal compounds, dumping large quantities of superoxide onto engulfed bacteria to kill them.

Although macrophages direct ROS against invading bacteria, Salmonella typhimurium, the microbe used in the study, is adept at evading these defenses. The most virulent strains of S. typhimurium can survive and even propagate inside macrophages, eventually emerging to infect more cells.

"It's been assumed that reactive oxygen species kill the bacteria by going into the cytoplasm and causing DNA damage," said medical microbiology professor James Slauch, who led the study. "You can find this idea over and over again in review articles and many immunological textbooks, but with no real data to back it up."

To test this hypothesis, Slauch and graduate student Maureen Craig looked at the superoxide dismutases that are part of the bacterial defense against ROS. There are two such enzymes in the cytoplasm of S. typhimurium, called SodA and SodB, and another, SodC, in the periplasm, the space between the bacteria's inner and outer membranes.

One way to understand the role of an enzyme is to see what happens when it is absent, so the researchers looked at mutant S. typhimurium that had the genes for SodA, SodB, or both enzymes, deleted. Deleting the gene for SodA seemed to make no difference, but the SodB mutants were less able to survive and cause disease in a mouse. The double mutants were even more impaired. They were much, much less likely to survive in the mouse than bacteria with only the SodB gene missing. These findings "offer genetic proof" that both enzymes "are involved in the same process," Slauch said.

The fact that the bacterial mutants were less likely to survive in a mouse did not prove, however, that the missing enzymes were protecting the bacteria from ROS generated in the mouse macrophages, Slauch said.

"You get the same result if you grow these mutants in the laboratory in aerobic conditions," he said.

Furthermore, the SodA/SodB mutant bacteria were profoundly weakened - even in a mouse that was unable to produce the potent ROS superoxide in its macrophages. These results suggest that the superoxide dismutases in the bacterial cytoplasm are most likely protecting the bacterium from its own, naturally occurring ROS, Slauch said.

In contrast, deleting the gene encoding the periplasmic superoxide dismutase, SodC, conferred the same defect regardless of whether the cytoplasmic SodA/SodB were present or absent, showing that its function is independent of the cytoplasm.

Moreover, strains lacking SodC were impaired only in the presence of superoxide produced in macrophages; there was no impairment in laboratory media or in mice lacking the ability to make superoxide.

This suggests that the superoxide and other reactive oxygen species are not making it from the macrophage into the bacterial cytoplasm, Slauch said.

"We conclude from all this data that the most sensitive target of ROS in the macrophages lies outside the cytoplasm," Slauch said. "We don't know what that target is, but it's clearly not in the cytoplasm."
-end-
Editor's notes: To reach James Slauch, call: 217-244-1956; e-mail: slauch@illinois.edu.

To view or subscribe to the RSS feed for Science News at Illinois, go to: http://webtools.uiuc.edu/rssManager/608/rss.xml.

University of Illinois at Urbana-Champaign

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...