Nav: Home

Missing planets attest to destructive power of stars' tides

April 27, 2009

During the last two decades, astronomers have found hundreds of planets orbiting stars outside our solar system. New research indicates they might have found even more except for one thing - some planets have fallen into their stars and simply no longer exist.

The idea that gravitational forces might pull a planet into its parent star has been predicted by computer models only in the last year or so, and this is the first evidence that such planet destruction has already occurred, said University of Washington astronomer Rory Barnes.

"When we look at the observed properties of extrasolar planets, we can see that this has already happened - some extrasolar planets have already fallen into their stars," he said.

Computer models can show where planets should line up in a particular star system, but direct observations show that some systems are missing planets close to the stars where models say they should be.

Barnes, a postdoctoral astronomy researcher with the Virtual Planet Laboratory at the UW, is a co-author of a paper describing the findings that was accepted this month for publication in Astrophysical Journal. Lead author Brian Jackson and co-author Richard Greenberg are with the Lunar and Planetary Laboratory at the University of Arizona.

The research involves planets that are close to their parent stars. Such planets can be detected relatively easily by changes in brightness as their orbits pass in front of the stars.

But because they are so close to each other, the planet and star begin pulling on each other with increasingly strong gravitational force, misshaping the star's surface with rising tides from its gaseous surface.

"Tides distort the shape of a star. The bigger the tidal distortion, the more quickly the tide will pull the planet in," Jackson said.

Most of the planets discovered outside of our solar system are gas giants like Jupiter except that they are much more massive. However, earlier this year astronomers detected an extrasolar planet called CoRoT-7 B that, while significantly larger than our planet, is more like Earth than any other extrasolar planet found so far.

However, that planet orbits only about 1.5 million miles from its star, much closer than Mercury is to our sun, a distance that puts it in the category of a planet that will fall into its star. Its surface temperature is around 2,500 degrees Fahrenheit "so it's not a pleasant environment," Barnes said, and in a short time cosmically - a billion years or so - CoRoT-7 B will be consumed.

The destruction is slow but inevitable, Jackson said.

"The orbits of these tidally evolving planets change very slowly, over timescales of tens of millions of years," Jackson said. "Eventually the planet's orbit brings it close enough to the star that the star's gravity begins tearing the planet apart.

"So either the planet will be torn apart before it ever reaches the surface of the star, or in the process of being torn apart its orbit eventually will intersect the star's atmosphere and the heat from the star will obliterate the planet."

The researchers hope the work leads to better understanding of how stars destroy planets and how that process might affect a planet's orbit, Jackson said.

The scientists also say their research will have to be updated as more extrasolar planets are discovered. NASA, which funded the research, recently launched the Kepler telescope, which is designed specifically to look for extrasolar planets that are closer in size to Earth.

Jackson hopes new observations will provide new lines of evidence to investigate how a star's tides can destroy planets.

"For example, the rotation rates of stars tend to drop, so older stars tend to spin more slowly than younger stars," he said. "However, if a star has recently consumed a planet, the addition of the planet's orbital angular momentum will cause the star to rapidly increase its spin rate. So we would like to look for stars that are spinning too fast for their age."
-end-
For more information, contact Barnes at 206-543-8979 or rory@astro.washington.edu; or Jackson at 520-626-3154 or bjackson@lpl.arizona.edu.

The paper is available at http://lanl.arxiv.org/abs/0904.1170

University of Washington

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...