Nav: Home

Tiny fossil horses put their back into it

April 27, 2016

Modern horses are expert runners. They reach top speeds using a special running gait in which they hold their back stiff as they move. A new study published today reveals that tiny fossil ancestors of modern horses may have moved quite differently to their living counterparts.

"Horses provide a perfect case-study on the evolution of running because they have such an amazing fossil record", explains author Dr. Katrina Jones, a post-doctoral researcher in Harvard's Museum of Comparative Zoology. Dating back over 50 million years, the oldest horse ancestors were no bigger than a house cat. From those ancient horse ancestors, some lineages evolved larger sizes, grazing habit and limbs that were specialized for running. This new study suggests that the stiff-backed gait of modern horses likely evolved to save energy while running as horses got bigger through their evolution.

"For over a century, researchers studied the feet of fossil horses to explain how they evolved features specialized for running," explains Jones, "but very little is known about how the backbone might be involved in this famous transition." Four-legged mammals tend to move their lower back during running to help increase speed and regulate breathing. But horses are unusual because they restrict the motion of their lumbar spine to a single joint near their rump. Jones wanted to find out if this unusual pattern was shared by extinct horses, and how increasing size in horse evolution may have affected their back mobility and running style.

To understand the evolution of the back in fossil horses, Jones first examined the anatomy and mobility of the spine in modern domestic horses. The shape of the vertebral joints--bony connections between the vertebrae--help determine how much motion occurs at each joint. Armed with this information, Jones then measured the shape of vertebral joints in 16 species of fossil horses spanning their full size and age range.

She found that small fossil horses, such as Hyracotherium (the 'dawn horse'), had quite different anatomy of the vertebral joints than their modern equivalents. This anatomy suggests more mobility was possible in the middle and lower portions of their back. Anatomy of these joints was also linked to body size--evolutionary branches which evolved greater size tended to display more restrictive joints. Jones hypothesizes that stability of the backbone evolved as a response to the mechanical challenge of large size in horses. Says Jones,"the energy required for a large animal to move at high speed can be extreme, so increasing running efficiency by minimizing motions of the trunk makes sense."

Jones speculates that these tiny ancient horses may not have been running in the same way as modern horses. Some living mammals can switch between stiff-backed and flex-backed running as they increase in speed. This could be one potential model for the evolution of specialized stiff-backed running in horses. This study reveals a new insight into a famous case-study of locomotor adaptation. Jones explains: "the findings are significant because they show how the backbone--a relatively understudied part of the anatomy--can provide new perspectives on locomotor transitions."
-end-


Harvard University

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...