It's the rain's fault

April 27, 2016

Rainwater may play an important role in the process that triggers earthquakes, according to new research.

Researchers from the University of Southampton, GNS Science (New Zealand), the University of Otago, and GFZ Potsdam (Germany), identified the sources and fluxes of the geothermal fluids and mineral veins from the Southern Alps of New Zealand where the Pacific and Australian Plates collide along the Alpine Fault.

From careful chemical analyses, they discovered that fluids originating from the mantle, the layer below the Earth's crust, and fluids derived from rainwater, are channelled up the Alpine Fault.

By calculating how much fluid is flowing through the fault zone at depth, the researchers showed for the first time that enough rainwater is present to promote earthquake rupture on this major plate boundary fault.

Lead researcher Dr Catriona Menzies, from Ocean and Earth Science at the University of Southampton, said: "Large, continental-scale faults can cause catastrophic earthquakes, but the trigger mechanisms for major seismic events are not well known. Geologists have long suspected that deep groundwaters may be important for the initiation of earthquakes as these fluids can weaken the fault zones by increasing pressures or through chemical reactions.

"Fluids are important in controlling the evolution of faults between earthquake ruptures. Chemical reactions may alter the strength and permeability of rocks, and if enough fluid is present at sufficiently high pressures they may aid earthquake rupture by 'pumping up' the fault zone."

The Alpine Fault is a major strike-slip fault, like the San Andreas, that fails in very large (Magnitude 8+) earthquakes around every 300 years. It last ruptured in 1717 AD and consequently it is under intense scientific scrutiny because it is a rare example of a major fault that is late in the strain-build up before rupture.

Dr Menzies said: "We show that the Alpine Fault acts as a barrier to lateral fluid flow from the high mountains of the Southern Alps towards the Tasman Sea in the west. However, the presence of mantle-derived fluids indicates that the fault also acts as a channel for fluids, from more than 35 km depth, to ascend to the surface.

"As well as mantle derived fluids, our calculations indicate that 0.02-0.05 per cent of surface rainfall reaches around six kilometres depth but this is enough to overwhelm contributions from the mantle and fluids generated during mountain-building by metamorphic reactions in hot rocks. This rainwater is then focused onto the fault, forced by the hydraulic head of the high mountains above and the sub-vertical fluid flow barrier of the Alpine Fault."
-end-
Funding for this research, published in Earth and Planetary Science Letters, was provided by the Natural Environmental Research Council (NERC), Deutsche Forschungsgemeinschaft, and GNS Science (New Zealand).

University of Southampton

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.