Nav: Home

Looking for the quantum frontier

April 27, 2017

A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. Importantly, they demonstrate that these computations can be performed with near-term, intermediate, quantum computers.

"Until recently it has been difficult to say definitively when quantum computers can outperform classical computers," said Professor Michael Bremner, Chief Investigator at the Centre for Quantum Computation and Communication Technology and founding member of the UTS Centre for Quantum Software and Information (UTS:QSI).

"The big challenge for quantum complexity theorists over the last decade has been to find stronger evidence for the existence of the quantum frontier, and then to identify where it lives. We're now getting a sense of this, and beginning to understand the resources required to cross the frontier to solve problems that today's computers can't."

The team has identified quantum computations that require the least known physical resources required to go beyond the capabilities of classical computers, significant because of the technological challenges associated with scaling up quantum computers.

Prof Bremner said that the result also indicates that full fault-tolerance may not be required to outperform classical computers. "To date, it has been widely accepted that error correction would be a necessary component of future quantum computers, but no one has yet been able to achieve this at a meaningful scale," said Bremner.

"Our work shows that while some level of error mitigation is needed to cross the quantum frontier, we may be able to outperform classical computers without the added design complexity of full fault tolerance," he said.

Dr Ashley Montanaro of the University of Bristol collaborated with Bremner to develop the framework.

"We started out with the goal of defining the minimum resources required to build a post-classical quantum computer, but then found that our model could be classically simulated with a small amount of noise, or physical imperfection," said Montanaro.

"The hope among scientists had always been that if the amount of noise in a quantum system was small enough then it would still be superior to a classical computer, however we have now shown that this probably isn't the case, at least for this particular class of computations," he said.

"We then realised that it is possible to use a classical encoding on a quantum circuit to overcome 'noise' in a much simpler way to mitigate these errors. The effectiveness of this approach was surprising. What it suggests is that we could use such structures to develop new quantum algorithms in a way that can directly avoid certain types of errors."

"This is a result that could lead to useful 'intermediate' quantum computers in the medium term, while we continue to pursue the goal of a full-scale universal quantum computer."
-end-
The paper detailing this research was selected for an editorial in the inaugural issue of Quantum journal, a new initiative in open-source, community-run academic publishing. UTS:QSI authors have been featured prominently in the journal's first edition. The work is supported with funding from the Australian Research Council through the Centre of Excellence and Future Fellowship programs.

Centre for Quantum Computation & Communication Technology

Related Quantum Computers Articles:

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.
Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.
Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.
FEFU scientists developed method to build up functional elements of quantum computers
Scientists from Far Eastern Federal University (FEFU, Vladivostok, Russia), together with colleagues from FEB RAS, China, Hong Kong, and Australia, manufactured ultra-compact bright sources based on IR-emitting mercury telluride (HgTe) quantum dots (QDs), the future functional elements of quantum computers and advanced sensors.
ORNL researchers advance performance benchmark for quantum computers
Researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.
Quantum computers learn to mark their own work
A new test to check if a quantum computer is giving correct answers to questions beyond the scope of traditional computing could help the first quantum computer that can outperform a classical computer to be realised.
Blanket of light may give better quantum computers
Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.
One step closer future to quantum computers
Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.
Dartmouth research advances noise cancelling for quantum computers
The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.
Spreading light over quantum computers
Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.
More Quantum Computers News and Quantum Computers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.