Nav: Home

Antidepressant may enhance drug delivery to the brain

April 27, 2017

NIH rat study suggests amitriptyline temporarily inhibits the blood-brain barrier, allowing drugs to enter the brain.

New research from the National Institutes of Health found that pairing the antidepressant amitriptyline with drugs designed to treat central nervous system diseases, enhances drug delivery to the brain by inhibiting the blood-brain barrier in rats. The blood-brain barrier serves as a natural, protective boundary, preventing most drugs from entering the brain. The research, performed in rats, appeared online April 27 in the Journal of Cerebral Blood Flow and Metabolism.

Although researchers caution that more studies are needed to determine whether people will benefit from the discovery, the new finding has the potential to revolutionize treatment for a whole host of brain-centered conditions, including epilepsy, stroke, human amyotrophic lateral sclerosis (ALS), depression, and others. The results are so promising that a provisional patent application has been filed for methods of co-administration of amitriptyline with central nervous system drugs.

According to Ronald Cannon, Ph.D., staff scientist at NIH's National Institute of Environmental Health Sciences (NIEHS), the biggest obstacle to efficiently delivering drugs to the brain is a protein pump called P-glycoprotein. Located along the inner lining of brain blood vessels, P-glycoprotein directs toxins and pharmaceuticals back into the body's circulation before they pass into the brain.

To get an idea of how P-glycoprotein works, Cannon said to think of the protein as a hotel doorman, standing in front of a revolving door at a lobby entrance. A person who is not authorized to enter would get turned away, being ushered back around the revolving door and out into the street.

"For example, as good as vegetables are for us to eat, they have molecules that could be toxic if they slipped into the brain," Cannon said. "They don't get in, because of P-glycoprotein, but this same protector also keeps out helpful therapeutics."

Cannon and his NIEHS colleagues initially found that amitriptyline significantly reduced P-glycoprotein's pump activity in brain capillaries from wild-type rats. Later, they saw amitriptyline had the same effect in brain capillaries from genetically modified rats designed to mimic human ALS. In both rat models, amitriptyline turned off P-glycoprotein within 10-15 minutes. When amitriptyline was removed, P-glycoprotein pump activity returned to full-strength.

NIEHS postbaccalaureate fellow David Banks is lead author on the paper and described amitriptyline's action on P-glycoprotein as rapid and reversible. It's these advantages that make the therapy so appealing.

"Most inventions developed at the bench don't make it to the clinic, but I'm hopeful that our findings will translate into better treatment options for doctors and their patients," Banks said.

Cannon anticipates that administering amitriptyline along with a lower dose of an opioid could relieve pain and reduce the negative side effects, such as constipation and addiction, usually seen with higher doses of prescribed opioids.

"As our nation faces increases in Alzheimer's disease, autism, and opioid abuse, we're hopeful that this discovery will help address these serious health challenges," said NIEHS Director Linda Birnbaum, Ph.D.
-end-
NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit http://www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health®

Grant Number:

1ZIAES080048-26

Provisional Patent Application Number:

62453718 - "Methods for Improving Drug Delivery Across the Blood-Brain Barrier"

For more information about a provisional patent, visit the NIH Patent Process webpage https://techtransfer.cancer.gov/intellectualproperty/patents/nih-patent-process.

Reference: Banks DB, Chan GNY, Evans RA, Miller DS, Cannon RE. 2017. Lysophosphatidic acid and amitriptyline signal through LPA1R to reduce p-glycoprotein transport at the blood-brain-barrier. J Cereb Blood Flow Metab; doi:10.1177/0271678X17705786 [Online 27 April 2017].

NIH/National Institute of Environmental Health Sciences

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...