Nav: Home

Keratin hydrogels show significant potential to regenerate lost muscle tissue & function

April 27, 2017

New Rochelle, NY, April 27, 2017--The use of human hair-derived keratin biomaterials to regenerate skeletal muscle has shown promise in new research that documents significant increases in both new muscle tissue formation and muscle function among mouse models of volumetric muscle loss. Two new studies that compare muscle regeneration following treatment with keratin hydrogels, no repair, or an alternative tissue matrix are published in in Tissue Engineering, Part A, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The articles are available free on the Tissue Engineering website until May 27, 2017.

In "Cell and Growth Factor-Loaded Keratin Hydrogels for Treatment of Volumetric Muscle Loss (VML) in Mouse Model," Hannah Baker, PhD, Juliana Passipieri, PhD, George Christ, PhD, and coauthors from University Maryland (College Park), University of Virginia (Charlottesville), Wake Forest University and KeraNetics, LLC (Winston-Salem, NC), and Miami University (Oxford, OH) report that mice with an area of substantial muscle mass loss that were treated with keratin hydrogels and growth factors had the best recovery of muscle contraction force. Examination of the affected muscle two months after treatment showed that mice with greater recovery of muscle function also had more extensive new muscle.

In a second study, entitled "Keratin Hydrogel Enhances In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss," Passipieri, Baker, Christ, et al. compared the results of treating a substantial muscle injury in rats using keratin hydrogels with or without growth factors or skeletal muscle progenitor cells versus control animals treated with no repair or an alternative tissue matrix. Keratin hydrogel-treated animals recovered up to 90% of the maximum possible muscle function.
-end-
"The authors have identified a novel permissive environment for muscle development in a region of loss." says Tissue Engineering Co-Editor-in-Chief Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC. "Further study to identify the optimal application of this technology and its mechanism of action is warranted."

About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-In-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed online at the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website .

Mary Ann Liebert, Inc./Genetic Engineering News

Related Tissue Engineering Articles:

Tissue engineering: The big picture on growing small intestines
CHLA surgeon Dr. Tracy Grikscheit and colleagues describe how stem cell therapies could help babies with severe intestinal issues.
Scientists use molecular tethers, chemical 'light sabers' for tissue engineering
Researchers at the University of Washington unveiled a new strategy to keep proteins intact and functional in synthetic biomaterials for tissue engineering.
UCI engineers aim to pioneer tissue-engineering approach to TMJ disorders
Here's something to chew on: One in four people are impacted by defects of the temporomandibular - or jaw - joint.
Scientists develop a cellulose biosensor material for advanced tissue engineering
I.M. Sechenov First Moscow State Medical University teamed up together with Irish colleagues to develop a new imaging approach for tissue engineering.
The use of electrospun scaffolds in musculoskeletal tissue engineering
Rotator Cuff tears affect 15 percent of 60 year olds and carry a significant social and financial burden.
Types and preparation techniques of scaffold materials in cartilage tissue engineering
Chondral defects caused by tumor, trauma, infection, congenital malformations are very common in clinical trials.
Novel method for precise, controllable cell deposition onto tissue engineering constructs
A new study presents a novel method of using a microfluidic flow cell array to achieve precise and reproducible control of cell deposition onto engineered tissue constructs to produce tunable cell patterns and generate essential integration zones.
Farewell flat biology -- Tackling infectious disease using 3-D tissue engineering
In a new invited review article, ASU Biodesign microbiologists and tissue engineers Cheryl Nickerson, Jennifer Barrila and colleagues discuss the development and application of three-dimensional (3-D) tissue culture models as they pertain to infectious disease.
Novel microplate 3D bioprinting platform for muscle & tendon tissue engineering
New research describes the development of a novel screening platform with automated production of 3D muscle- and tendon-like tissues using 3D bioprinting.
3D printed sugar offers sweet solution for tissue engineering, device manufacturing
University of Illinois engineers built a 3D printer that offers a sweet solution to making detailed structures that commercial 3D printers can't: Rather than a layer-upon-layer solid shell, it produces a delicate network of thin ribbons of hardened isomalt, the type of sugar alcohol used to make throat lozenges.
More Tissue Engineering News and Tissue Engineering Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.