Nav: Home

A turbo engine for tracing neurons

April 27, 2017

Putting a turbo engine into an old car gives it an entirely new life--suddenly it can go further, faster. That same idea is now being applied to neuroscience, with a software wrapper that can be used on existing neuron tracing algorithms to boost their ability to handle not just big, but enormous sets of data. The wrapper, called UltraTracer, is highlighted this month in Nature Methods.

"In trying to uncover the diversity of neuron shapes, scale is a very large and increasingly pressing problem," says Hanchuan Peng, Ph.D., Associate Investigator at the Allen Institute for Brain Science. "We need to be able to compare tens of thousands of neuron shapes in order to really understand what they look like, and to use that information to parse individual cell 'types.'"

Peng and his team designed UltraTracer to work with existing neuron tracing algorithms designed by scientists around the world, turbo-charging them to work faster and with larger datasets. In the paper, they describe applying UltraTracer to ten different base tracers and also to any other base tracers in the BigNeuron initiative (bigneuron.org), developed by different people and that used varying techniques to automatically detect the shapes of neurons in three-dimensional image stacks.

The team was able to demonstrate UltraTracer's unique ability to supercharge existing software. Using the Allen Cell Types Database as a biological reference, the software first learned what neurons "should" look like. UltraTracer then made existing algorithms more efficient to handle bigger data sets, and combined several different algorithms in an organic way that made the most of each tracer's strengths.

"With UltraTracer, we are giving new life to neuron tracing algorithms that already exist and making them even more powerful," says Peng. "We can now test how well these algorithms work at very large scales, and make them work better. This will be a crucial step in addressing fundamental questions about cell types in the brain."

-end-



Allen Institute

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.