Nav: Home

Bright future for solar cell technology

April 27, 2018

Harnessing energy from the sun, which emits immensely powerful energy from the center of the solar system, is one of the key targets for achieving a sustainable energy supply.

Light energy can be converted directly into electricity using electrical devices called solar cells. To date, most solar cells are made of silicon, a material that is very good at absorbing light. But silicon panels are expensive to produce.

Scientists have been working on an alternative, made from perovskite structures. True perovskite, a mineral found in the earth, is composed of calcium, titanium and oxygen in a specific molecular arrangement. Materials with that same crystal structure are called perovskite structures.

Perovskite structures work well as the light-harvesting active layer of a solar cell because they absorb light efficiently but are much cheaper than silicon. They can also be integrated into devices using relatively simple equipment. For instance, they can be dissolved in solvent and spray coated directly onto the substrate.

Materials made from perovskite structures could potentially revolutionize solar cell devices, but they have a severe drawback: they are often very unstable, deteriorating on exposure to heat. This has hindered their commercial potential.

The Energy Materials and Surface Sciences Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), led by Prof. Yabing Qi, has developed devices using a new perovskite material that is stable, efficient and relatively cheap to produce, paving the way for their use in the solar cells of tomorrow. Their work was recently published in Advanced Energy Materials. Postdoctoral scholars Dr. Jia Liang and Dr. Zonghao Liu made major contributions to this work.

This material has several key features. First, it is completely inorganic - an important shift, because organic components are usually not thermostable and degrade under heat. Since solar cells can get very hot in the sun, heat stability is crucial. By replacing the organic parts with inorganic materials, the researchers made the perovskite solar cells much more stable.

"The solar cells are almost unchanged after exposure to light for 300 hours," says Dr. Zonghao Liu, an author on the paper.

All-inorganic perovskite solar cells tend to have lower light absorption than organic-inorganic hybrids, however. This is where the second feature comes in: The OIST researchers doped their new cells with manganese in order to improve their performance. Manganese changes the crystal structure of the material, boosting its light harvesting capacity.

"Just like when you add salt to a dish to change its flavor, when we add manganese, it changes the properties of the solar cell," says Liu.

Thirdly, in these solar cells, the electrodes that transport current between the solar cells and external wires are made of carbon, rather than of the usual gold. Such electrodes are significantly cheaper and easier to produce, in part because they can be printed directly onto the solar cells. Fabricating gold electrodes, on the other hand, requires high temperatures and specialist equipment such as a vacuum chamber.

There are still a number of challenges to overcome before perovskite solar cells become as commercially viable as silicon solar cells. For example, while perovskite solar cells can last for one or two years, silicon solar cells can work for 20 years.

Qi and his colleagues continue to work on these new cells' efficiency and durability, and are also developing the process of fabricating them on a commercial scale. Given how quickly the technology has developed since the first perovskite solar cell was reported in 2009, the future for these new cells looks bright.

Okinawa Institute of Science and Technology (OIST) Graduate University

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

The Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals
by Juan Bisquert (Author)

Materials Concepts For Solar Cells (Energy Futures)
by Thomas Dittrich (Author)

Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall series in solid state physical electronics)
by Martin A. Green (Author)

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)

PHYSICS OF SOLAR CELLS, THE (Properties of Semiconductor Materials)
by Jenny Nelson (Author)

Solar Cells: Materials, Manufacture and Operation
by Augustin McEvoy (Author), L. Castaner (Author), Tom Markvart (Author)

Practical Electronics for Inventors, Fourth Edition
by Paul Scherz (Author), Simon Monk (Author)

Physics of Solar Cells: From Basic Principles to Advanced Concepts (No Longer Used)
by Peter Würfel (Author), Uli Würfel (Author)

Practical Photovoltaics: Electricity from Solar Cells, 3rd Edition
by Richard J. Komp (Author), John Perlin (Foreword)

The Complete Guide About Solar Energy: A Practical Beginners Guide To Solar Panels, Cells and Electricity
by Russel Hobbs (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Story Behind The Numbers
Is life today better than ever before? Does the data bear that out? This hour, TED speakers explore the stories we tell with numbers — and whether those stories portray the full picture. Guests include psychologist Steven Pinker, economists Tyler Cowen and Michael Green, journalist Hanna Rosin, and environmental activist Paul Gilding.
Now Playing: Science for the People

#487 Knitting in PEARL
This week we're discussing math and things made from yarn. We welcome mathematician Daina Taimina to the show to discuss her book "Crocheting Adventures with Hyperbolic Planes: Tactile Mathematics, Art and Craft for all to Explore", and how making geometric models that people can play with helps teach math. And we speak with research scientist Janelle Shane about her hobby of training neural networks to do things like name colours, come up with Halloween costume ideas, and generate knitting patterns: often with hilarious results. Related links: Crocheting the Hyperbolic Plane by Daina Taimina and David Henderson Daina's Hyperbolic Crochet blog...