Nav: Home

New catalyst turns ammonia into an innovative clean fuel

April 27, 2018

Taking measures against climate change and converting into societies that use significant amounts of renewable energy for power are two of the most important issues common to developed countries today. One promising technology in those efforts uses hydrogen (H2) as a renewable energy source. Although it is a primary candidate for clean secondary energy, large amounts of H2 must be converted into liquid form, which is a difficult process, for easier storage and transportation. Among the possible forms of liquid H2, ammonia (NH3) is a promising carrier because it has high H2 density, is easily liquefied, and can be produced on a large-scale.

Additionally, NH3 has been drawing attention recently as a carbon-free alternative fuel. NH3 is a combustible gas that can be widely used in thermal power generation and industrial furnaces as an alternative to gasoline and light oil. However, it is difficult to burn (high ignition temperature) and generates harmful nitrogen oxides (NOx) during combustion.

Researchers at the International Research Organization for Advanced Science and Technology (IROAST) in Kumamoto University, Japan focused on a "catalytic combustion method" to solve the NH3 fuel problems. This method adds substances that promote or suppress chemical reactions during fuel combustion. Recently, they succeeded in developing a new catalyst which improves NH3 combustibility and suppresses the generation of NOx. The novel catalyst (CuOx/3A2S) is a mullite-type crystal structure 3Al2O3·2SiO2 (3A2S) carrying copper oxide (CuOx). When NH3 was burned with this catalyst, researchers found that it stayed highly active in the selective production of N2, meaning that it suppressed NOx formation, and the catalyst itself did not change even at high temperatures. Additionally, they succeeded with in situ (Operando) observations during the CuOx/3A2S reaction, and clarified the NH3 catalytic combustion reaction mechanism.

Since 3A2S is a commercially available material and CuOx can be produced by a method widely used in industry (wet impregnation method), this new catalyst can be manufactured easily and at low cost. Its use allows for the decomposition of NH3 into H2 with the heat from (low ignition temperature) NH3 fuel combustion, and the purification of NH3 through oxidation.

"Our catalyst appears to be a step in the right direction to fight anthropogenic climate change since it does not emit greenhouse gasses like CO2 and should improve the sophistication of renewable energy within our society," said study leader Dr. Satoshi Hinokuma of IROAST. "We are planning to conduct further research and development under more practical conditions in the future."

This research was posted online in the Journal of Catalysis on 26 March 2018.
-end-
[Source]

Hinokuma, S., Kiritoshi, S., Kawabata, Y., Araki, K., Matsuki, S., Sato, T., & Machida, M. (2018). Catalytic ammonia combustion properties and operando characterization of copper oxides supported on aluminum silicates and silicon oxides. Journal of Catalysis, 361, 267-277. doi:10.1016/j.jcat.2018.03.008

Kumamoto University

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...