Nav: Home

Partial mechanical unfolding may regulate protein function

April 27, 2018

A study carried out as a collaborative approach between University of Tampere, Finland, and Imperial College London has shown that mechanically regulated proteins talin and α-catenin have stable intermediates during mechanical unfolding. The stable unfolding intermediates are formed by three α-helices.

In this study, a combination of steered molecular dynamics simulations, polyprotein engineering, and single-molecule atomic force microscopy was used to investigate unfolding of these proteins. Talin and α-catenin are α-helical proteins that pay a key role in formation of macromolecular complexes that enable cells to interact with the extracellular matrix or other cells.

Mechanical forces that are transmitted between the cell and its environment activate binding and regulate the functions of these scaffolding proteins at cell-extracellular matrix and cell-cell contacts. Thus, mechanical stability is a key feature in the regulation of functions of these structural scaffolding proteins. It was demonstrated that talin and α-catenin unfold through stable 3-helix intermediates, that represent biologically active states, and may allow recruitment of other binding partners.

The research was performed in collaboration between University of Tampere, Finland, and Imperial College London. Researchers at Tampere were responsible for computational work while researchers in London carried out the single-molecule atomic force microscopy experiments.
-end-
For more information, please contact: Associate professor Dr. Vesa Hytönen, University of Tampere, vesa.hytonen@uta.fi, +358 40 190 1517;
Senior lecturer Dr. Armando del Rio Hernandez, Imperial College London, a.del-rio-hernandez@imperial.ac.uk, +44 207 594 5187.

The original source: Vasyl V. Mykuliak, Alexander William M. Haining, Magdaléna von Essen, Armando del Río Hernández, Vesa P. Hytönen. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin. PLOS Computational Biology

University of Tampere

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
New interaction mechanism of proteins discovered
UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves.
When proteins shake hands
Protein nanofibres often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.
Proteins' fluorescence a little less mysterious
Rice University scientists use simulations to understand the mechanism behind a popular fluorescent protein used to monitor signals between neurons.
New study suggests health benefits of swapping animal proteins for plant proteins
Substituting one to two servings of animal proteins with plant proteins every day could lead to a small reduction in the three main cholesterol markers for cardiovascular disease prevention, a new study suggests.
More Proteins News and Proteins Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.