Artificial intelligence helps soldiers learn many times faster in combat

April 27, 2018

ADELPHI, MD. (April 26, 2018) -- New technology allows U.S. Soldiers to learn 13 times faster than conventional methods and Army researchers said this may help save lives.

At the U.S. Army Research Laboratory, scientists are improving the rate of learning even with limited resources. It's possible to help Soldiers decipher hints of information faster and more quickly deploy solutions, such as recognizing threats like a vehicle-borne improvised explosive device, or potential danger zones from aerial war zone images.

The researchers relied on low-cost, lightweight hardware and implemented collaborative filtering, a well-known machine learning technique on a state-of-the-art, low-power Field Programmable Gate Array platform to achieve a 13.3 times speedup of training compared to a state-of-the-art optimized multi-core system and 12.7 times speedup for optimized GPU systems.

The new technique consumed far less power too. Consumption charted 13.8 watts, compared to 130 watts for the multi-core and 235 watts for GPU platforms, making this a potentially useful component of adaptive, lightweight tactical computing systems.

Dr. Rajgopal Kannan, an ARL researcher, said this technique could eventually become part of a suite of tools embedded on the next generation combat vehicle, offering cognitive services and devices for warfighters in distributed coalition environments.

Developing technology for the next generation combat vehicle is one of the six Army Modernization Priorities the laboratory is pursuing.

Kannan collaborates with a group of researchers at the University of Southern California, namely Prof. Viktor Prasanna and students from the data science and architecture lab on this work. ARL and USC are working to accelerate and optimize tactical learning applications on heterogeneous low-cost hardware through ARL's - West Coast open campus initiative.

This work is part of Army's larger focus on artificial intelligence and machine learning research initiatives pursued to help to gain a strategic advantage and ensure warfighter superiority with applications such as on-field adaptive processing and tactical computing.

Kannan said he is working on developing several techniques to speed up AI/ML algorithms through innovative designs on state-of-the-art inexpensive hardware.

Kannan said the techniques in the paper can become part of the tool-chain for potential projects. For example, a new adaptive processing project that recently started where he's a key researcher could use these capabilities.

His paper on accelerating stochastic gradient descent, a technique ubiquitous to many machine learning training algorithms, won the best-paper award at the 26th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, the premier international conference on technical research in FPGAs, held in Monterey, California, Feb. 25-27.
-end-


U.S. Army Research Laboratory

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.