Nav: Home

Scientists verify a way of how to improve resolution of most powerful microscopes

April 27, 2018

Researchers from Tomsk Polytechnic University (Russia) and Bangor University (UK) have experimentally verified anomalous amplitude apodization for non-spherical particles for the first time. This phenomenon makes it possible to boost the magnifying power of microscopes and to more effectively record molecules and viruses. The study results were reported in Journal of Infrared, Millimeter, and Terahertz Waves.

"If we mask part of an ordinary lens surface with an optical filter, it will increase the magnifying power of the lens. But peak field intensity drops dramatically. The same effect is typical of spherical particle-lenses in nano-scopes or high-definition optical microscopes with a magnifying power of 50 nanometers. If we use non-spherical particles, including cylinders with illuminated butt-ends, as lenses, and if we mask part of the surface, it will simultaneously boost their magnifying power and peak field intensity. This is called the amplitude mask apodization effect," Professor Igor Minin from Tomsk Polytechnic University's faculty of electronic engineering noted.

Non-spherical particles function as super-lenses accumulating evanescent (damp) waves that can form an image with unprecedentedly high definition levels.

In their work, scientists cite experimental data confirming the existence of the amplitude mask apodization effect in the millimeter waveband. During their experiments, cuboid dielectric particles, part of whose surfaces (about 45 percent) are covered with a copper amplitude mask, showed a 36-percent increase in magnifying power, with peak field intensity levels increasing by over 30 percent.

You could say that spherical particle-lenses boost the magnifying power of nano-scopes only through the loss of energy. But when we use non-spherical particles, the magnifying power increases at a rate commensurate with the greater peak field intensity levels," Minin added. The long-term development of this technique will make it possible to obtain images of large biological molecules, viruses and the internal elements of living cells using non-spherical particles.

Experts will no longer have to painstakingly prepare various samples. For example, this is an important aspect of fluorescent microscopy. The amplitude mask apodization effect has a wide range of applications where sub-wavelength focusing is required. These are medicine, non-destructive testing, flaw detection, on chip processing and data transfer systems, etc.
-end-


Tomsk Polytechnic University

Related Viruses Articles:

First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.
Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.
Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum M√ľnchen and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.
How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?
Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.
How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.
Viruses under the microscope
Human herpesviruses such as HHV-6 can remain dormant in cells for many years without being noticed.
Ancient origins of viruses discovered
Research published today in Nature has found that many of the viruses infecting us today have ancient evolutionary histories that date back to the first vertebrates and perhaps the first animals in existence.
Attacking flu viruses from two sides
UZH researchers have discovered a new way in which certain antibodies interact with the flu virus.
How bats carry viruses without getting sick
Bats are known to harbor highly pathogenic viruses like Ebola or Marburg and yet they do not show clinical signs of disease.
More Viruses News and Viruses Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.