Nav: Home

Research gives new ray of hope for solar fuel

April 27, 2018

The quest to develop the 'Holy Grail' of affordable, viable and environmentally-friendly fuels using sunlight has taken an exciting new twist.

A team of Renewable Energy experts from the University of Exeter has pioneered a new technique to produce hydrogen from sunlight to create a clean, cheap and widely-available fuel.

The team developed an innovative method to split water into its constituent parts - hydrogen and oxygen - using sunlight. The hydrogen can then be used as a fuel, with the potential to power everyday items such as homes and vehicles.

Crucially, hydrogen fuel that can be created through this synthetic photosynthesis method would not only severely reduce carbon emissions, but would also create a virtually limitless energy source.

The ground-breaking new research centres on the use of a revolutionary photo-electrode - an electrode that absorbs light before initializing electrochemical transformations to extract the hydrogen from water - made from nanoparticles of the elements lanthanum, iron and oxygen.

The researchers believe this new type of photo-electrode is not only cheap to produce, but can also be recreated on a larger scale for mass and worldwide use.

The research is published in leading journal, Scientific Reports.

Govinder Pawar, lead author on the paper and based at the University of Exeter's Environment and Sustainability Institute on the Penryn Campus in Cornwall said: "With growing economies and population, fossil fuels will not be able to sustain the global energy demand in a "clean" manner as they are being exhausted at an alarming rate.

"Alternative renewable fuels sources must be found which can sustain the global energy demand. Hydrogen is a promising alternative fuel source capable of replacing fossil fuels as it has a higher energy density than fossil fuels (more than double), zero carbon emissions and the only by-product is water."

At present, around 85 per cent of the global energy provisions come from the burning of fossil fuels. Therefore the need and desire to find a sustainable, cost-effective renewable fuel source is growing in urgency.

Perhaps unsurprisingly, the sun is earth's most abundant renewable energy source, with the potential to provide 100,000 terawatts of power each year - meaning one hour's worth of solar energy is equal to an entire year of total energy consumption worldwide.

However, efforts to produce efficient stable semiconductor material, in order to effectively convert sunlight to a storable widespread energy source, have so far proved elusive.

One of the most significant hindrances to the development of viable solar energy has been an inability to produce a semiconducting material suitable for the process.

In this new research, the team utilised lanthanum iron oxide to create a semiconducting material that gave the ideal results for the production of hydrogen from water using sunlight, making it the strongest candidate yet for renewable hydrogen generation.

Govinder Pawar added: "We have shown that our LaFeO3 photo-electrode has ideal band alignments needed to split water into its constituents (H2 and O2) spontaneously, without the need of an external bias. Moreover, our material has excellent stability where after 21 hours of testing it does not degrade, ideal for water splitting purpose. We are currently working on further improving our material to make it more efficient to produce more hydrogen."

Unbiased Spontaneous Solar fuel Production using Stable LaFeO3 Photoelectrode is published in Scientific Reports.
-end-


University of Exeter

Related Hydrogen Articles:

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
The faint glow of cosmic hydrogen
A study published recently in Nature magazine, in which Ana Monreal-Ibero, a researcher at the Instituto de Astrofísica de Canarias (IAC) is a participant, reveals the presence of a hitherto undetected component of the universe: large masses of gas surrounding distant galaxies.
New technology improves hydrogen manufacturing
INL researchers demonstrated high-performance electrochemical hydrogen production at a lower temperature than had been possible before.
Hydrogen transfer: One thing after the other
Hydride transfer is an important reaction for chemistry (e.g., fuel cells), as well as biology (e.g., respiratory chain and photosynthesis).
Is hydrogen the fuel of the future?
As the race to find energy sources to replace our dwindling fossil fuel supplies continues apace, hydrogen is likely to play a crucial role in the future.
More Hydrogen News and Hydrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.