Nav: Home

New technology for measuring brain blood flow with light

April 27, 2018

Biomedical engineers at the University of California, Davis, have developed a new technique for measuring blood flow in the human brain, which could be used in patients with stroke or traumatic brain injury, for example. The new technique, based on conventional digital camera technology, could be significantly cheaper and more robust than prior methods.

The work is described in a paper published April 26 in the journal Optica.

"Our setup is very promising, and the cost should be lower," said Wenjun Zhou, a postdoctoral researcher working with Vivek Srinivasan, associate professor at the UC Davis Department of Biomedical Engineering.

If you shine a light into a cloudy solution, light particles, or photons, will be scattered in different directions. An experimental technique called diffuse correlation spectroscopy, or DCS, uses essentially this approach to look inside someone's skull. Laser light is shined on the head; as photons from the laser pass through the skull and brain, they are scattered by blood and tissue. A detector placed elsewhere on the head, where the photons make their way out again, picks up the light fluctuations due to blood motion. These fluctuations provide information about blood flow.

The light signal is very weak, and the further it passes through the skull and brain tissue, the weaker it gets. So DCS requires a number of very sensitive, expensive single photon counting detectors. Boosting the light going in risks burning the patient's skin.

Interference to boost signal

Zhou and Srinivasan took a different approach, based on the fact that overlapping light waves will reinforce or cancel each other out, like overlapping ripples on a pond.

They first split the light beam into "sample" and "reference" paths. The sample beam goes into the patient's head and another, stronger, reference beam is routed so that it reconnects with the sample beam before going to the detector. This boosts the signal, meaning that instead of needing about 20 photon-counting detectors that cost a few thousand dollars each, the researchers could use a single CMOS-based digital camera chip for a fraction of the price.

"The strong reference light enhances the weaker signal from the sample," Zhou said.

They call the method interferometric diffusing wave spectroscopy, or iDWS. An added advantage is that they do not need to turn off the room lights while making measurements with iDWS, Zhou said. Eventually, they may even be able to monitor brain blood flow outdoors, under bright sunlight.

So far, the team has tested their device by making brain recordings from volunteers in the laboratory. They are working with Dr. Bruce Lyeth and Dr. Lara Zimmermann in the UC Davis Department of Neurological Surgery to validate and adapt the technology for eventual use in neurocritical care. UC Davis has applied for a provisional patent on the technology.
-end-
Other authors on the paper are graduate student Oybek Kholiqov and postdoctoral researcher Shau Poh Chong. Srinivasan also holds an appointment at the Department of Ophthalmology and Vision Science, UC Davis School of Medicine. The work was funded by grants from the National Institutes of Health.

University of California - Davis

Related Stroke Articles:

Retraining the brain to see after stroke
A new study out today in Neurology, provides the first evidence that rigorous visual training restores rudimentary sight in patients who went partially blind after suffering a stroke, while patients who did not train continued to get progressively worse.
Catheter ablations reduce risks of stroke in heart patients with stroke history, study finds
Atrial fibrillation patients with a prior history of stroke who undergo catheter ablation to treat the abnormal heart rhythm lower their long-term risk of a recurrent stroke by 50 percent, according to new research from the Intermountain Medical Center Heart Institute.
Imaging stroke risk in 4-D
A new MRI technique developed at Northwestern University detects blood flow velocity to identify who is most at risk for stroke, so they can be treated accordingly.
Biomarkers may help better predict who will have a stroke
People with high levels of four biomarkers in the blood may be more likely to develop a stroke than people with low levels of the biomarkers, according to a study published in the Aug.
Pre-stroke risk factors influence long-term future stroke, dementia risk
If you had heart disease risk factors, such as high blood pressure, before your first stoke, your risk of suffering subsequent strokes and dementia long after your initial stroke may be higher.
Intervention methods of stroke need to focus on prevention for blacks to reduce stroke mortality
Blacks are four times more likely than their white counterparts to die from stroke at age 45.
Study shows area undamaged by stroke remains so, regardless of time stroke is left untreated
A study led by Achala Vagal, M.D., associate professor at the University of Cincinnati College of Medicine and a UC Health radiologist, looked at a group of untreated acute stroke patients and found that there was no evidence of time dependence on damage outcomes for the penumbra, or tissue that is at risk of progressing to dead tissue but is still salvageable if blood flow is returned in a stroke, but rather an association with collateral flow -- or rerouting of blood through clear vessels.
Immediate aspirin after mini-stroke substantially reduces risk of major stroke
Using aspirin urgently could substantially reduce the risk of major strokes in patients who have minor 'warning' events.
SAGE launches the European Stroke Journal with the European Stroke Organisation
SAGE, a world leading independent and academic publisher, is delighted to announce the launch of the European Stroke Journal, the flagship journal of the European Stroke Organisation.
The S-stroke or I-stroke?
The year 2016 is an Olympic year. Developments in high-performance swimwear for swimming continue to advance, along with other areas of scientific research.

Related Stroke Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".