Nav: Home

A shape to remember

April 27, 2018

Kyoto University scientists are one step closer to designing porous materials that can change and retain their shapes--a function known as shape-memory effect.

Shape-memory materials have applications in many fields. For example, they could be implanted in the body and then induced to change shape for a specific function, such as serving as the scaffold for bone tissue regeneration. The shape-memory effect is well documented in some materials, including ceramics and metal alloys. But it is rare and poorly understood in crystalline porous materials.

Now, Susumu Kitagawa of Kyoto University's Institute for Integrated Cell-Material Sciences and colleagues in Japan, Ireland and the US have demonstrated a shape-memory effect in a flexible metal organic material -- only the second such observation ever reported. They describe their findings in the journal Science Advances.

Crystals were made by dissolving a mixture of chemicals and zinc nitrate hexahydrate in a common solvent called dimethylformamide at 120°C for 24 hours. Using an X-ray technique called single-crystal X-ray diffraction, the team studied the crystals' structure. They found they were formed of slightly distorted paddlewheel-shaped lattices, which were made of central zinc ions linked to surrounding organic molecules. This 'alpha phase' of the crystal had 46% porosity, meaning that 46% of its volume was available for accepting new molecules; the property that makes porous materials suitable for a variety of applications.

When the team heated the alpha crystal at 130°C in a vacuum for 12 hours, the crystal became more dense, its lattices became more distorted, and its porosity was reduced to only 15%. They called this phase of the crystal its beta phase.

They then added carbon dioxide to the crystal at a temperature of -78°C. Carbon dioxide was adsorbed into the crystal's pores and the crystal's shape changed to less-distorted lattices than those in the beta phase. The available volume for accepting guest molecules increased to 34%. When the team added and removed carbon dioxide from the crystal over ten consecutive cycles, they found that it retained its shape. They called this phase of the crystal its 'shape-memory' gamma phase.

Adding nitrogen or carbon monoxide under varying temperatures also induced the transformation of the crystal from its beta to its gamma phase.

The team was able to revert the crystal's gamma phase back to its beta phase by heating it at 130°C in a vacuum for two hours. To revert to the alpha phase, the gamma phase of the crystal was soaked in dimethylformamide for five minutes.

The team's analyses of the crystal allowed them to have a better understanding of how its function changes along with structure. The researchers note their work could provide the basis for designing more examples of shape-memory porous materials.
-end-
DOI: 10.1126/sciadv.aaq1636

For more information about this research, contact

Susumu Kitagawa
kitagawa@icems.kyoto-u.ac.jp

About Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS)

At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired super materials that confront the myriad problems that afflict modern society. In only a decade, collaborative research at iCeMS has resulted in significant cutting-edge scientific discoveries, and the creation of over 1500 unique materials. We will keep turning our inspirations into purposeful, transformative innovations for the practical benefit of society. https://www.icems.kyoto-u.ac.jp/en/

For more information about iCeMS, contact

I. Mindy Takamiya
itakamiya@icems.kyoto-u.ac.jp

Kyoto University

Related Molecules Articles:

Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
Hand-knitted molecules
Molecules are usually formed in reaction vessels or laboratory flasks.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Data storage using individual molecules
Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled.
Small molecules come into focus
Many biologically important small molecules, like hormones and amino acids, are too small to be measured by conventional detection methods.
We now know how RNA molecules are organized in cells
With their new finding, Canadian scientists urge revision of decades-old dogma on protein synthesis
A new way to create molecules for drug development
Chemists at The Ohio State University have developed a new and improved way to generate molecules that can enable the design of new types of synthetic drugs.
How ions gather water molecules around them
Charged particles in aqueous solutions are always surrounded by a shell of water molecules.
More Molecules News and Molecules Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.