Using cloud-precipitation relationship to estimate cloud water path of mature tropical cyclones

April 27, 2020

The cloud water path of mature tropical cyclones can be estimated by a notable sigmoid function of near-surface rain rate, according to Prof. Yunfei Fu, a professor at the School of Earth and Space Sciences, University of Science and Technology of China, and one of the authors of a recently published study in Advances in Atmospheric Sciences.

"It is known that clouds play a significant role in the climate system due to their ability to modify the global radiation balance and atmospheric water cycle. Furthermore, cloud development, to a certain extent, will produce precipitation, which is closely related to many aspects of human life. The cloud microphysical processes that affect precipitation are complex, and whether cloud parameters can be used as indicators for precipitation, or vice versa, requires further study," says the first author of the study, Dr. Shuang Luo. "We analyzed the potential correlation between cloud microphysical properties and precipitation, to deepen our understanding of the evolution of cloud to rain."

Luo and Fu combine time- and space-synchronized precipitation and spectral data obtained by the Precipitation Radar as well as the Visible and Infrared Scanner onboard the TRMM satellite, and therefore overcome the limitations of precipitation properties and cloud parameters not being synchronized in previous studies.

In order to investigate the relationship between cloud water and precipitation intensity in mature typhoon systems, the team obtained 25 collocated satellite overpasses of mature typhoon cases in the Northwest Pacific Ocean from 1998 to 2012 (144,515 precipitation pixels in total). The results show that the cloud water path exhibits an oblique S-type change with increasing near-surface rain rate and ultimately tends toward saturation. In addition, the cloud water path and near-surface rain rate of mature typhoon systems with different precipitation types, precipitation cloud phases, and vertical depths of precipitation can be fitted by a notable sigmoid function, which may be useful for estimating the cloud water path and parameterizing precipitation in models.

"These newly derived relations certainly provide a new way to estimate the cloud water path of mature typhoon systems in the Northwest Pacific Ocean," Dr. Luo believes. "To better capture information inside the clouds, we need to obtain not only the cloud microphysical properties near the cloud tops, but also the profiles of cloud parameters inside the clouds, which is essential to analyzing the correlation between cloud and precipitation profiles." They plan to conduct further research along these lines in the future.
-end-


Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Precipitation Articles from Brightsurf:

Convection-permitting modelling improves simulated precipitation over the Tibetan Plateau
A China-UK research team explains the possible reasons for excessive precipitation over the TP in the mesoscale convection-parameterized models.

Spread of monsoon circulation changes explains uncertainty in global land monsoon precipitation projection
A new study emphasizes the importance of reliable prediction of circulation changes, to ensure that future projections of global land monsoon are suitable for use by policy makers.

GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations
GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations.

The spatial consistency of summer rainfall variability between the Mongolian Plateau and North China
The regional differences and similarities of precipitation variability are hotspots in climate change research.

Scientists find key factors impacting sideswiping tropical cyclone precipitation
Scientists find that the distribution of sideswiping tropical cyclones precipitation(STP) includes extreme STP events that appear not only over the island and coastal areas, but also over inland areas

Rainy season tends to begin earlier in Northern Central Asia
The researchers found robust increase of annual mean precipitation at the end of the 21st century under all modelling scenarios over northern central Asia.

Using cloud-precipitation relationship to estimate cloud water path of mature tropical cyclones
Scientists find the cloud water path of mature tropical cyclones can be estimated by a notable sigmoid function of near-surface rain rate.

Precipitation will be essential for plants to counteract global warming
A new Columbia Engineering study shows that increased water stress--higher frequency of drought due to higher temperatures, is going to constrain the phenological cycle: in effect, by shutting down photosynthesis, it will generate a lower carbon uptake at the end of the season, thus contributing to increased global warming.

Fall precipitation predicts abundance of curly top disease and guides weed management
Transmitted by an insect known as the beet leafhopper, curly top disease is a viral disease affecting many crops, including melons, peppers, sugar beets, and tomatoes.

Study confirms climate change impacted Hurricane Florence's precipitation and size
A new modeling framework showed that Hurricane Florence produced more extreme rainfall and was spatially larger due to human-induced climate change.

Read More: Precipitation News and Precipitation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.