A promising new treatment for recurrent pediatric brain cancer

April 27, 2020

Two pediatric brain cancers that are challenging to treat if they recur, medulloblastoma and ependymoma, are the target of a clinical trial using a new type of therapy. A multi-institutional, international team led by researchers at Baylor College of Medicine, Texas Children's Hospital and the Hospital for Sick Children (SickKids) has developed a novel approach that delivers appropriately-targeted chimeric antigen receptor (CAR) T cell therapy directly into the cerebrospinal fluid that surrounds the tumor.

The researchers report in the journal Nature Medicine that this approach was effective in treating these cancers in mouse models of human disease. The findings support further clinical studies to evaluate this strategy to treat pediatric brain cancers, the most common cause of cancer death in childhood. Indeed, a first-in-child clinical trial currently is recruiting patients at Texas Children's Hospital and Baylor College of Medicine to test the safety and anti-tumor efficacy of this approach (Clinicaltrials.gov identifier: NCT02442297).

"Recurrences of medulloblastoma and ependymoma can be disseminated throughout the lining of the brain and spinal cord, which are bathed in cerebrospinal fluid. This location offers the opportunity to deliver therapies into the cerebrospinal fluid compartment and could provide a better chance for the therapy to reach and eliminate the tumor than administering it through the blood stream," said co-corresponding author Dr. Nabil Ahmed, associate professor of pediatrics and immunology, section of hematology-oncology at Baylor and Texas Children's Hospital.

"The vast majority of children with recurrent metastatic medulloblastoma or ependymoma currently have a deadly prognosis, so it is very exciting to think we have identified a novel approach to treat this underserved patient population," said co-corresponding author Dr. Michael Taylor, neurosurgeon, senior scientist in the Developmental and Stem Cell Biology program, Garron Family Chair in Cancer Research at SickKids, and professor in the Departments of Surgery and Laboratory Medicine and Pathobiology at the University of Toronto.

This project was led by Dr. Laura Donovan, post-doctoral fellow in the Developmental and Stem Cell Biology program at SickKids, who performed in-depth molecular studies of the target profile of recurrent medulloblastoma and ependymoma. These studied guided the design of CAR T cells engineered by Ahmed and colleagues at Baylor's Center for Cell and Gene Therapy and Texas Children's Hospital to target the most appropriate cancer molecules.

CAR T cells are a form of immunotherapy involving engineering of T cells, a type of immune cell that fights cancer. The researchers genetically engineered CAR T cells to recognize specific molecules on the surface of the tumor cells. When these CAR T cells encounter the tumor, they can fight it more effectively. CAR T cells have been impressively effective for patients with certain types of leukemia and are FDA-approved for this disease.

In mouse model studies, CAR T cells were administered into the cerebrospinal fluid around the tumor or into the blood stream of mice harboring multiple patient-derived medulloblastoma and ependymoma tumors. The tumor size and animal survival were studied for about 200 days.

The results showed that administering tumor-specific CAR T cells into the cerebrospinal fluid was more effective than administering them via the blood.

"As opposed to delivery through the blood, cerebrospinal fluid delivery overcomes the blood-brain barrier and also offers the advantage of minimizing exposure of other tissues of the body to the CAR T cells and, consequently, potential side effects," Donovan said.

In some of their experiments, the researchers combined CAR T cells with an approved cancer medication called azacytidine. The results showed that combining immunotherapy with azacytidine was significantly more effective than either treatment alone.

"This work was possible thanks to the concerted collaboration of our Pediatric Cancer Dream Team supported by Stand Up to Cancer (SU2C) St. Baldrick's Foundation Translational Research Grant, which brought together scientists studying tumor genomics and tumor immunotherapy around the world to enable the design of more effective therapies for children with incurable and hard to treat cancers," Ahmed said.
-end-
For a complete list of all the contributors, their affiliations and financial support for this project, visit the publication.

Baylor College of Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.