Nav: Home

Fracking and earthquake risk

April 27, 2020

Hydraulic fracturing for oil and gas production can trigger earthquakes, large and small. A new approach to managing the risk of these quakes could help operators and regulators hit the brakes early enough to prevent nuisance and reduce the chance of property damage and injury.

The approach, developed by four Stanford University researchers and published April 28 in the Bulletin of the Seismological Society of America, centers on a calculation of the risk that shaking triggered by a given project will be felt in surrounding communities - long before earthquakes grow large enough to do harm.

Hydraulic fracturing, or fracking, involves pumping fluids at high pressure into wells drilled down into and across rock formations thousands of feet underground. The pressure creates small earthquakes that break the rock, forcing open existing fractures or creating new ones. Petroleum then flows more easily out of the cracked rocks and into the well. "The goal is to make many tiny earthquakes, but sometimes they are larger than planned," said study co-author William Ellsworth, a geophysics professor at Stanford's School of Earth, Energy & Environmental Sciences (Stanford Earth).

By taking the local risk of nuisance-level shaking as its starting point, the new strategy contrasts with the current common practice for managing fracking-related quakes based on size. Under a system known as a traffic-light protocol, operators have a green light to proceed as long as earthquakes remain relatively small. Larger earthquakes may require an operator to adjust or stop work. The system is widely used to manage hazards of fracking for oil and gas in the United States, Canada, China and Europe, and also for geothermal energy development in South Korea, Europe and the United States.

"Implicitly, I think regulators have had risk in the back of their mind," said study co-author Greg Beroza, a geophysics professor at Stanford. "But risk-based frameworks have not been used previously - perhaps because it requires a bit of extra analysis."

Earthquake size offers a rough proxy for how much damage can be expected, and it's a measure that regulators and operators can monitor in real time. The problem is quakes of the same size can present very different risks from one location to another due to differences in population density. "A project located in a virtually uninhabited area of west Texas would pose a much lower risk than a similar project located near a city," Ellsworth explained.

In addition, geological factors including earthquake depth, fault geometry and local soil conditions can influence how an earthquake's energy - and potential to do damage - becomes amplified or peters out as it travels underground. All of this context is key to honing in on a tolerable amount of shaking and establishing traffic-light thresholds accordingly.

"Areas such as Oklahoma, with buildings that were not designed to resist strong shaking, or areas that anticipate amplified shaking due to soft soils, can account for their community needs with this approach," said study co-author Jack Baker, a professor of civil and environmental engineering who leads the Stanford Center for Induced and Triggered Seismicity with Beroza, Ellsworth and Stanford geophysicist Mark Zoback.

The Stanford researchers developed mathematical techniques to account for the web of risk factors that shape the probability of an earthquake generating noticeable or damaging shaking in a specific location. They built upon these techniques to make a translation to earthquake magnitude. This allowed them to create guidelines for devising new traffic-light protocols that still use earthquake size to clearly delineate between the green, yellow and red zones, but with much more tailoring to local concerns and geology.

"If you tell me what exposure you have in a certain area - population density, site amplification, distance to towns or critical infrastructure - our analysis can spit out numbers for green-, yellow- and red-light thresholds that are fairly well informed by real-world risks," said lead study author Ryan Schultz, a PhD student in geophysics.

The analysis also makes it possible, he added, to start out with some level of risk deemed tolerable - say, a 50 percent chance of nuisance-level shaking at the nearest household - and calculate the maximum earthquake magnitude that would keep risk at or below that level. "This is about making it clearer what choices are being made," Schultz said, "and facilitating a conversation between operators, regulators and the public."

In general, the authors recommend setting yellow-light thresholds approximately two magnitude units below the red light. According to their analysis, this would result in 1 percent of cases jumping from the green zone straight to red. "If you stop the operation right at or before the threshold for damage, you're assuming you have perfect control, and often that's not the reality," Schultz said. "Often, the biggest earthquakes happen after you've turned off the pumps."
Baker is also an affiliate at Stanford's Precourt Institute for Energy and director of the Stanford Urban Resilience Initiative. Beroza is the Wayne Loel Professor in Stanford's School of Earth, Energy & Environmental Sciences.

The work was funded by the Stanford Center for Induced and Triggered Seismicity (SCITS), which is supported by corporate membership fees. Members include Chevron Corp., ConocoPhillips, Devon Energy, EcoPetrol, Exxon Mobil Corp., Marathon Oil Corp., MRC Energy (Matador), Occidental Oil & Gas, Ovintiv, Pioneer Natural Resources and Shell Int. Expl.

Stanford's School of Earth, Energy & Environmental Sciences

Related Earthquake Articles:

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.
How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.
Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.
Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.
New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.
Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.
Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.