Nav: Home

Investigating the causes of the ozone levels in the Valderejo Nature Reserve

April 27, 2020

Atmospheric contamination is one of society's main concerns, with nitrogen dioxide (NO2) and tropospheric ozone (O3) being among the contaminants that are giving rise to the most concern. In principle, the measures to reduce NO2 contamination effectively are fairly easy to identify; however, reducing O3 contamination is much more complex because it is a secondary contaminant that is not emitted directly but is generated on the basis of chemical reactions in the atmosphere. So a number of contaminants, such as nitrogen oxides (NOx) and a large number of volatile organic compounds (VOC), undergo various chemical reactions and physical transformations brought about by the action of solar radiation and which lead to the formation of ozone. "Ozone is formed in the atmosphere mainly as a result of the reaction of NOx and VOCs in the presence of high solar radiation," said María Carmen Gómez, researcher in the UPV/EHU's Atmospheric Research Group (GIA). So "the way to control the ozone involves controlling these contaminants, their precursors and getting to know their formation mechanisms better", she added.

The Valderejo Nature Reserve is one of the stations in the Basque Country where over the last few years the legal limits stipulated for ozone have been intermittently exceeded. Against this background and for the purpose of studying the ozone dynamics in this area, the UPV/EHU's Atmospheric Research Group has developed a database of more than 60 volatile organic compounds measured continuously over the last ten years in the Valderejo Nature Reserve. VOCs originate both naturally (biogenic VOCs, BVOCs) and anthropogenically (due to the evaporation of organic solvents, the burning of fuels, transport, etc.). So "we characterised the precursors in ozone formation and calculated the formation potential of each compound individually", explained María Carmen Gómez.

"The main results of this study centre on the episodes in which the target and/or information threshold values stipulated by legislation for ozone were exceeded, which tends to occur in the Valderejo Nature Reserve between June and September. The contribution of biogenic volatile organic compounds (BVOCs) towards the ozone forming potential over the summer months is reckoned to account for up to 68% of the total VOCs measured," said the UPV/EHU researcher. "BVOCs include isoprene and monoterpines emitted by vegetation. Isoprene is highly volatile and its emission increases with the rise in temperature and radiation. Monoterpines, emitted mostly by conifers, are stored by part of the vegetation; radiation has little effect on their emission, while temperature has a major effect," explained Gomez.

What is more, "we saw that between 13% and 51% of the ozone recorded in the reserve is due to local VOCs; the rest are transported to the measuring station, in particular when contaminated air masses arrive", said the researcher of the group.

María Carmen Gómez stresses the need for the study to be pursued further. "It is a way of expanding knowledge about ozone transportation and formation processes in the Basque Autonomous Community (region). As they are complex processes, the more information we have, the greater the possibilities will be of interpreting them properly so that they can be used to manage air quality and inform control strategies".
-end-


University of the Basque Country

Related Ozone Articles:

Investigating the causes of the ozone levels in the Valderejo Nature Reserve
The UPV/EHU's Atmospheric Research Group (GIA) has presented a database comprising over 60 volatile organic compounds (VOC) measured continuously over the last ten years in the Valderejo Nature Reserve (Álava, Basque Country).
FSU Research: Despite less ozone pollution, not all plants benefit
Policies and new technologies have reduced emissions of precursor gases that lead to ozone air pollution, but despite those improvements, the amount of ozone that plants are taking in has not followed the same trend, according to Florida State University researchers.
Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.
Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.
Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.
How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.
New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.
Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.
Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.
Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.
More Ozone News and Ozone Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.