Wake Forest scientists develop colony of mice that fight off virulent cancer

April 28, 2003

WINSTON-SALEM, N.C. - Scientists at the Comprehensive Cancer Center of Wake Forest University have developed a colony of mice that successfully fight off virulent transplanted cancers.

"The mice are healthy, cancer-free and have a normal life span," the 10-member team reported in the Proceedings of the National Academy of Sciences online edition to be published the week of April 28.

The transplantation of the cancer cells in these special mice provokes a massive infiltration of white blood cells that destroy the cancer, said Zheng Cui, M.D., Ph.D., associate professor of pathology at Wake Forest University Baptist Medical Center and the lead scientist

"The destruction of cancer cells by these leukocytes is rapid and specific without apparent damage to normal cells," Cui said. "These observations suggest a previously unrecognized mechanism by which the body can fight off cancer."

The discovery of a genetic protection from cancer in mice "may have potential for better therapy or prevention of cancer in people," the team said. It also could help explain why some people are protected against cancer despite prolonged and intense exposure to carcinogens..

The discovery also could help solve another mystery. For years, scientists have been searching for the mechanism that permits spontaneous regression of human cancers without treatment. Cui said these cases are well-documented, but occur rarely. The new mouse colony gives the team the opportunity to study the mechanism in an animal model.

Cui and his colleagues began the mouse colony almost by serendipity. As part of ongoing cancer studies, they were injecting a virulent type of cancer cell that forms highly aggressive cancers in all strains of laboratory mice and rats. When injected into the abdomen, the tumor grows exponentially, causing the abdomen to fill with fluid within two weeks. The cancer can then progress by metastasizing into the liver, kidney, pancreas, lung, stomach and intestine.

But, said Cui, one male mouse unexpectedly remained free of the cancer despite repeated injections. The Wake Forest team was able to show this was genetic and to develop a colony from that single mouse. The colony, now about 700 mice, remains exclusively at Wake Forest. Meantime, the original mouse "remained healthy, cancer-free and eventually died of old age after a normal lifespan."

When the cancer-resistant mice were bred with normal partners, the researchers found that about half of their offspring were resistant to cancer cells, indicating that this genetic protection is dominant and is likely due to a change in one gene. The resistance continued in future generations.

Depending on the age of the mouse, some had complete resistance -- the cancer never got started -- while others displayed spontaneous regression -- the cancer started developing over a period of a couple of weeks, but then it rapidly disappeared in less than 24 hours.

"The mice became healthy and immediately resumed normal activities including mating," Cui said. They tested them again with another injection of the cancer cells. He said that once the mice developed the protection, they never again developed the cancer.

The researchers said the mouse model "represents a unique opportunity to examine cancer/host interactions."

Cui said the new mouse model also may help in solving another medical mystery -- why cancer becomes more common when people age. The usual explanation is that mutations accumulate in the body, leading to precancerous conditions that eventually become cancer.

But, he said, the mouse model suggests that the body's natural protection -- which scientists call host resistance -- declines with age.

"This is at a preliminary stage, but very promising," said Mark Willingham, MD., professor of pathology and a collaborator. "Our hope is that, some day, this will have an impact on human cancer."
-end-
The ongoing research is supported by the Charlotte Geyer Foundation, the National Cancer Institute and, most recently, by the Cancer Research Institute.

Contact: Robert Conn (rconn@wfubmc.edu), Karen Richardson (krchrdsn@wfubmc.edu) or Barbara Hahn (bhahn@wfubmc.edu) at 336-716-4587.

Wake Forest Baptist Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.