Researchers drill historic hole in Atlantic Ocean floor

April 28, 2005

COLLEGE STATION, Apr. 28, 2005 - Researchers from the Integrated Ocean Drilling Program (IODP) have drilled into sections of the Earth's crust for the first time ever, and their findings could provide new insights about how Earth was formed.

Scientists aboard the research vessel JOIDES Resolution, of which Texas A&M University serves as the chief contractor, took almost three months to drill the hole, which penetrates more than 4,600 feet below the ocean floor. It is in an area called the Atlantis Massif located in the middle of the Atlantic Ocean, says Jay Miller, staff scientist at Texas A&M and one of the leaders of the project.

The new hole - the third deepest ever drilled in the "basement" area of the oceanic crust - has provided more than 3,000 feet of core samples that researchers will examine over the next three to four years, Miller said. It could provide key data on how ocean crust and other layers form, and the research may yield new perspectives on how the ocean crust was formed and has evolved through time.

"What we know about how the interior of the Earth evolved is based primarily on geophysical data," Miller explains.

"The samples we've collected lead us to believe that we've oversimplified some features. We know now that each time we drill a hole, we learn the structure of the Earth is much more complex than we had thought. Much of this drilling work is changing our understanding of how the Earth developed."

Drilling during the expedition, which was completed in early March, lasted 24 hours a day through solid rock, Miller said. Research teams from IODP's members (the United States, Japan, China and the European Consortium for Ocean Research) involved 18 different countries.

Miller said the core samples will be analyzed and additional drilling could be possible.

"The area where we were is sort of a mountain on the ocean floor," he explains

"The data from where we drilled also need to be studied thoroughly so we can develop a model to work from. This could provide us with a window to parts of the oceanic crust we've never seen.

"From these samples, we hope to assemble pictures and data of what the entire ocean crust looks like. This hole we've drilled is just one part of the big puzzle below the ocean floor."

Miller said the 4,600-foot hole "is still there, open and in good condition. We could return to it at any time in the future and deepen it."
-end-
The IODP is an international marine research drilling program dedicated to advancing scientific understanding of the Earth by monitoring and sampling subseafloor environments. Drilling platforms are operated by the Joint Oceanographic Institutions Alliance (JOI, Texas A&M and Lamont-Doherty Earth Observatory of Columbia University), Japan's Center for Deep Earth Exploration and the European Consortium for Ocean Research Drilling (ECORD).

The 10-year, $1.5 billion IODP program is supported by two lead agencies - the U.S. National Science Foundation and Japan's Ministry of Education, Culture, Sports, Science and Technology - and by ECORD and China's Ministry of Science and Technology.

Contact: Jay Miller at (979) 845-2197 or email at miller@iodp.tamu.edu.

Randall

Texas A&M University

Related Ocean Floor Articles from Brightsurf:

Former piece of Pacific Ocean floor imaged deep beneath China
In a study that gives new meaning to the term ''rock bottom,'' seismic researchers have discovered the underside of a rocky slab of Earth's lithosphere that has been pulled more than 400 miles beneath northeastern China by the process of tectonic subduction.

Love waves from the ocean floor
Supercomputer simulations of planetary-scale interactions show how ocean storms and the structure of Earth's upper layers together generate much of the world's seismic waves.

Solving the mystery of carbon on ocean floor
Little bits of black carbon littering the ocean floor, separate and distinct from the organic carbon believed to come from the ocean's surface.

Largest mapping of breathing ocean floor key to understanding global carbon cycle
The largest open-access database of the sediment community oxygen consumption and CO2 respiration is now available.

New threat from ocean acidification emerges in the Southern Ocean
Scientists investigating the effect of ocean acidification on diatoms, a key group of microscopic marine organisms, phytoplankton, say they have identified a new threat from climate change -- ocean acidification is negatively impacting the extent to which diatoms in Southern Ocean waters incorporate silica into their cell walls.

Monitoring CO2 leakage sites on the ocean floor
Injecting carbon dioxide (CO2) deep below the seabed could be an important strategy for mitigating climate change, according to some experts.

Earth recycles ocean floor into diamonds
Most diamonds are made of cooked seabed. The diamond on your finger is most likely made of recycled seabed cooked deep in the Earth.

Otherworldly mirror pools and mesmerizing landscapes discovered on ocean floor
Scientists aboard Schmidt Ocean Institute's research vessel Falkor recently discovered and explored a hydrothermal field at 2,000 meters depth in the Gulf of California where towering mineral structures serve as biological hotspots for life.

MERMAIDs reveal secrets from below the ocean floor
Floating seismometers dubbed MERMAIDs -- Mobile Earthquake Recording in Marine Areas by Independent Divers -- reveal that Galápagos volcanoes are fed by a mantle plume reaching 1,900 km deep.

Delivery method associated with pelvic floor disorders after childbirth
Research completed at Johns Hopkins and the Greater Baltimore Medical Center has demonstrated that vaginal childbirth substantially increases the probability a woman will develop a pelvic floor disorder later in life.

Read More: Ocean Floor News and Ocean Floor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.