Nav: Home

Seaglider monitors climate-related ocean circulation in the Arctic

April 28, 2009

An intelligent, ocean-going glider has spent more than five months on a record-breaking deployment to sample the icy waters off western Greenland. The samples will contribute to the longest continuous measurement of Arctic currents that help to drive ocean circulation and regulate global seawater temperatures.

The 49-kilogram (110-pound) seaglider, developed and deployed by researchers at the University of Washington, measured fresh water leaving the Arctic Ocean through the Canadian Arctic Archipelago and Davis Strait and entering the Labrador Sea.

Scientists are concerned that Arctic climate change and increased fresh-water runoff are affecting the formation of very dense water in the Labrador Sea. That dense, cold water is a critical component driving the circulation of the world's oceans, according to Craig Lee, a principal oceanographer with the University of Washington's Applied Physics Laboratory (APL).

Lee and senior oceanographer Jason Gobat lead the group developing the under-the-ice seaglider with support from the National Science Foundation (NSF).

The seaglider is one of more than 35 projects that are part of NSF's Arctic Observing Network (AON), which is meant to track and understand Arctic environmental change using an integrated suite of tools ranging from ocean buoys to satellites. Under-ice gliders might one day be among a suite of devices under the ice-covered high Arctic.

AON was one of NSF's primary research thrusts for the International Polar Year (IPY), which ended in late March. IPY was a 24-month deployment by scientists from 60 countries around the world to better understand the physical characteristics of the Polar Regions, their role as regulators of global climate and the nature of the changes occurring their as global temperatures rise. In the Arctic, scientists and Native communities also worked together not only to understand the changes themselves, but also the effects of change on subsistence lifestyles.

NSF was the lead U.S. agency for IPY.

The seaglider project was an international cooperative that included Richard Moritz, Kate Stafford and Beth Curry of APL; Brian Petrie, of the Bedford Institute of Oceanography in Canada; and Kunuk Lennert and other scientists with the Greenland Institute of Natural Resources.

Seagliders developed by the university's School of Oceanography and APL are small, reusable underwater vehicles meant to operate on their own, gliding without propellers from the surface to as deep as 1,000 meters (3,300 feet), while collecting information about temperature, salinity and level of dissolved oxygen. When seagliders are at the ocean surface they can be commanded remotely from nearly anywhere in the world via the Internet and can transmit their data via satellite telephone.

The recent glider deployment allowed the university to surpass its two-year-old world record for operating a glider under the ice, this time by successfully operating a glider as it made round trips hundreds of miles in length under the ice of the Davis Strait.

The University of Washington group is the first and only one in the world sending gliders under the ice. With NSF support, the university has developed a glider with enough artificial intelligence to be able to:
  • Consider how long it has been under the ice and how urgent it is to try to reach an opening in the ice to transmit its data,
  • Use an internal ice atlas to weigh the odds of having open water above and then check as it rises to determine if the water temperature actually indicates whether ice is overhead. If conditions aren't right and there isn't an urgent need to download data, it just dives back down rather than chance damaging itself on the ragged underside of the ice,
  • Sense an impending mechanical, electrical or communications failure and make a run for it- that is, try to get out from under the ice and into open water where it could relay its position and possibly be recovered.
Unlike faster-moving propeller-driven autonomous underwater vehicles (AUVs), which may need to be retrieved by ships only days after being deployed, the seagliders can operate on their own for months at a time.

The ability to do so under ice, developed by Lee's group, is important in a place such as Davis Strait where scientists want to measure how much fresh water flows through the strait and at what times of year so they have a baseline for comparison in coming years.

Early development of the university's seagliders was paid for by the Office of Naval Research. NSF funded work to add an under-ice capability to the glider to expand its capabilties and improve its ability to take samples in hostile Arctic waters.

"This cutting-edge technology has the potential to make year-round measurements over broad areas where access by other means is severely limited, due to the presence of sea ice for part or all of the year," according to Martin Jeffries, NSF's AON program director.

Moorings--strings of instruments tethered to the seafloor--are also monitoring water in the Davis Strait but are not ideal for detecting plumes of fresh water, Lee says. For one thing, the freshest water is often found in a thin layer about 50 meters (164 feet) thick just under the sea ice. Tethering an instrument atop a mooring so it reaches that thin layer puts the instrument at risk of being ruined if an especially thick, low-hanging piece of ice comes along and strikes it.

Seagliders pass through that upper 50 meters as they dive from the top to the bottom of the strait and so can supply data in places that instruments on the mooring can't, Lee says.

A seaglider's first trip under the ice, in December 2006, last only 14 days.

In the latest deployment, two APL seagliders went into the water on Sept. 5, 2008. They relied on five sound sources in Davis Strait to figure out where they were and navigate once under the ice.

One operated for 25 weeks, spending 51 days and traveling more than 724 kilometers (450 miles) under the ice, before being collected Feb. 26 by the Danish Navy. During under-ice operations, the glider periodically sought small openings in the ice cover and succeeded in surfacing 10 times to transmit data. It made two round trips under the ice of about 370 kilometers (230 miles) each. Its journey was not as direct as desired on some legs because of weak signals from the navigation beacon and a now-known bug in the glider's navigation system, Lee says. Still it collected an unprecedented record of fresh water moving through the strait.

The second glider operated as if it were in the open ocean because it dipped under the ice just before operators activated its "under-ice" mode. It therefore operated as if there were no ice overhead, trying to surface and, once it found a hole in the ice, stubbornly transmitting all of its data. To avoid freezing into the ice, gliders operating in "under-ice" mode stay only a brief time at the surface before diving back into the ocean. This glider tarried too long became frozen in the ice and was likely subsequently crushed as it was carried with the ice in the Baffin Island Current.
-end-
Image/B-Roll Contact: Dena Headlee, NSF, (703) 292-7739, dheadlee@nsf.gov

View a video of the seaglider and an interview with Craig Lee of the University of Washington.

National Science Foundation

Related Sea Ice Articles:

Low sea-ice cover in the Arctic
The sea-ice extent in the Arctic is nearing its annual minimum at the end of the melt season in September.
Arctic sea ice 2019 wintertime extent is seventh lowest
Sea ice in the Arctic appears to have hit its annual maximum extent after growing through the fall and winter.
Study shows algae thrive under Greenland sea ice
Microscopic marine plants flourish beneath the ice that covers the Greenland Sea, according to a new study in the Journal of Geophysical Research: Oceans.
ICESat-2 reveals profile of ice sheets, sea ice, forests
With each pass of the ICESat-2 satellite, the mission is adding to datasets tracking Earth's rapidly changing ice.
Arctic cyclone limits the time-scale of precise sea-ice prediction in Northern Sea Route?
Climate change has accelerated sea-ice retreat in the Arctic Ocean, leading to new opportunities for summer commercial maritime navigation along the Northern Sea Route.
Ocean waves following sea ice loss trigger Antarctic ice shelf collapse
Storm-driven ocean swells have triggered the catastrophic disintegration of Antarctic ice shelves in recent decades, according to new research published in Nature today.
New technique more accurately reflects ponds on Arctic sea ice
This one simple mathematical trick can accurately predict the shape and melting effects of ponds on Arctic sea ice, according to new research by UChicago scientists.
Arctic wintertime sea ice extent is among lowest on record
Sea ice in the Arctic grew to its annual maximum extent last week, and joined 2015, 2016 and 2017 as the four lowest maximum extents on record, according to scientists at the NASA-supported National Snow and Ice Data Center (NSIDC) and NASA.
Sea ice algae blooms in the dark
Researchers from Aarhus University have measured a new world record: Small ice algae on the underside of the Arctic sea ice live and grow at a light level corresponding to only 0.02 percent of the light at the surface of the ice.
Weather anomalies accelerate the melting of sea ice
ETH researchers reveal why Arctic sea ice began to melt in the middle of winter two years ago -- and that the increased melting of ice in summer is linked to recurring periods of fair weather.
More Sea Ice News and Sea Ice Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.