Complex brain functions help adapt to new situations and stimuli

April 28, 2010

PROVIDENCE, R.I. [Brown University] -- Scientists have long known that the brain's frontal cortex supports concrete rule learning. Less clear is how the brain processes more complex and unfamiliar knowledge. In a paper published today (Wednesday, April 28, 2010) in the journal Neuron, a team of researchers at Brown University and the University of California-Berkeley tested whether the frontal lobe has the ability to process more abstract knowledge and how this ability could help navigate new situations and stimuli.

The researchers believed that the brain's frontal cortex could be organized in a front-to-back hierarchy in which the neurons at the front of the frontal cortex have the ability to process more progressively abstract knowledge. This part of the brain, therefore, would be more important in planning and deciding what to do when a person is faced with an unfamiliar problem. To test this hypothesis, the researchers used functional magnetic resonance imaging (fMRI) to study participants during two unfamiliar tasks, one with concrete rules and the other with more abstract rules.

"The average person can easily determine how to open a door by pulling a rope rather than turning a knob, even if they have not seen the rope handle previously," said David Badre, assistant professor of cognitive and linguistic sciences at Brown. "We wanted to investigate how the brain achieves this remarkable flexibility and test whether we use generalized forms of past knowledge to solve current problems."

The researchers found that the activity in an anterior part of the frontal cortex predicted individual differences in participants' success at discovering abstract relationships. Based on their observations, the researchers suggest that when faced with a new situation, people may search for relationships between context and action that involve multiple levels of abstraction simultaneously. This capability could underlie the ability to adapt behaviors based on the generalization of separate, past learning.

"How we face new problems and the reasoning, decision-making and action that we take in an uncertain situation may have more to do with the functional organization of the frontal cortex than we previously realized," said Badre.
-end-
The National Institutes of Health provided funding for the study.

Brown University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.