Nav: Home

Theoretical tiger chases statistical sheep to probe immune system behavior

April 28, 2016

Studying the way that solitary hunters such as tigers, bears or sea turtles chase down their prey turns out to be very useful in understanding the interaction between individual white blood cells and colonies of bacteria. Reporting their results in the Journal of Physics A: Mathematical and Theoretical, researchers in Europe have created a numerical model that explores this behaviour in more detail.

Using mathematical expressions, the group can examine the dynamics of a single predator hunting a herd of prey. The routine splits the hunter's motion into a diffusive part and a ballistic part, which represent the search for prey and then the direct chase that follows.

"We would expect this to be a fairly good approximation for many animals," explained Ralf Metzler, who led the work and is based at the University of Potsdam in Germany.

Obstructions included

To further improve its analysis, the group, which includes scientists from the National Institute of Chemistry in Slovenia, and Sorbonne University in France, has incorporated volume effects into the latest version of its model. The addition means that prey can now inadvertently get in each other's way and endanger their survival by blocking potential escape routes.

Thanks to this update, the team can study not just animal behaviour, but also gain greater insight into the way that killer cells such as macrophages (large white blood cells patrolling the body) attack colonies of bacteria.

One of the key parameters determining the life expectancy of the prey is the so-called 'sighting range' - the distance at which the prey is able to spot the predator. Examining this in more detail, the researchers found that the hunter profits more from the poor eyesight of the prey than from the strength of its own vision.

Long tradition with a new dimension

The analysis of predator-prey systems has a long tradition in statistical physics and today offers many opportunities for cooperative research, particularly in fields such as biology, biochemistry and movement ecology.

"With the ever more detailed experimental study of systems ranging from molecular processes in living biological cells to the motion patterns of animal herds and humans, the need for cross-fertilisation between the life sciences and the quantitative mathematical approaches of the physical sciences has reached a new dimension," Metzler comments.

To help support this cross-fertilisation, he heads up a new section of the Journal of Physics A: Mathematical and Theoretical that is dedicated to biological modelling and examines the use of numerical techniques to study problems in the interdisciplinary field connecting biology, biochemistry and physics.
-end-


IOP Publishing

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...