Nav: Home

Four new genetic diseases defined within schizophrenia

April 28, 2016

Changes in key genes clearly define four previously unknown conditions within the umbrella diagnosis of schizophrenia, according to a study led by researchers from NYU Langone Medical Center published online April 28 in EBioMedicine, a Lancet journal. Cases associated with changes in each of the four genes were different from each other in terms of symptoms, intelligence level and other disease features.

Unlike "big data" genetic studies, which have loosely linked hundreds of genetic changes to schizophrenia but cannot explain varying symptoms, the new study revealed distinct disease versions that may affect large slices of patients and enable precision treatment design, say the authors.

"A common fallacy is that schizophrenia can be treated as a single disease," says NYU Langone psychiatrist and lead study author Dolores Malaspina, MD. "Our biologically driven study begins to answer longstanding questions in the field about why any two people diagnosed with schizophrenia may have drastically different symptoms. For the first time, we have defined four syndromes mechanistically.

"Perhaps as many as 30 percent of schizophrenic patients may now become candidates for more precise treatment based on the individual characteristics of these four genes, with the remaining cases becoming less mysterious as we pull these groups out of the mix," says Malaspina, the Anita Steckler and Joseph Steckler Professor in the Department of Psychiatry at NYU Langone. "Our approach provides a new framework for finding influential genes across complex genetic diseases associated with paternal age, from schizophrenia to autism."

Patients with schizophrenia struggle to interpret reality, typically suffering from hallucinations, learning disabilities, emotional withdrawal and lack of motivation. In the current study, researchers analyzed 48 ethnically diverse patients diagnosed with schizophrenia, looking at symptom sets in patients found to have rare or previously unknown changes in the DNA code of the four genes that disrupted brain function.

Key Genes Identified

The four influential genes now tied by the study to specific conditions are all involved in the growth or regulation of nerve circuits. They included PTPRG, which encodes a protein that enables nerve cells to connect as they form nerve networks. Patients with rare changes in this gene experienced earlier onset of relatively severe psychosis, and had a history of learning disabilities. Despite the high intelligence in some, they showed cognitive deficits in working memory, the "scratchpad" where the brain stores and processes temporary memories.

A second key gene, SLC39SA13, codes for a zinc transporter that helps nerve cells to "decide" whether or not nerve impulses are amplified of dampened. These cases showed widespread cognitive deficits, low educational attainment and the most severe deficits in emotion and motivation.

A third influential gene was ARMS/KIDINS220, which codes for a protein that regulates the growth of nerve cells. Patients who had changed versions of this gene showed early promise, often attending college, but then experienced cognitive decline consistent with a degenerative disease. The last gene of interest was TGM5, which encodes a protein that stabilizes protein groups. Related proteins have been linked to age-related degenerative conditions like Huntington's disease. TGM5 cases had less severe symptoms, but were more often diagnosed with attention deficit disorder during childhood.

"Our results argue that new treatments should - while addressing core psychoses - also focus on processing speed in TGM5 cases, working memory in PTPRG, zinc augmentation in SLC39A13, and nerve cell protection in patients with ARMS/KIDINS220 mutations," says first study author Thorsten Kranz, a postdoctoral fellow in the lab of NYU Langone neuroscientist Moses Chao, PhD. "Treatments that do not work for all patients may be highly effective in some."

A study published last year by the same team lay the foundation for the current EBioMedicine publication by defining the framework for finding influential genes. This study examined the genetic code of affected patients with schizophrenia and their healthy parents to identify newly occurring (sporadic) mutations that disrupted the four influential signaling genes in 31 percent of these patients.

In general, more than 70 percent of schizophrenia cases are sporadic versus familial - so many patients have variants of influential genes that have occurred in them for the first time. Malaspina's team was the first to show in a 2001 paper that the most important source of these rare, sporadic changes was the paternal germline (father's sperm), with advanced paternal age explaining over a quarter of the population risk for schizophrenia in an Israeli cohort. Sperm cells divide and multiply 600 times by the time a father reaches age 50. DNA is copied with each round of cell divisions, and copy errors accumulate as a father ages.

"Our combined findings to date argue that newly occurring mutations introduced via the father's germline in sporadic cases, when compared to healthy parents, represent a powerful tool for defining precise versions of schizophrenia," says Malaspina.
Along with Malaspina, the study was led by Kranz and Chao of the Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, at NYU Langone, and by medical students Adam Berns and Jerry Shields of the Institute for Social and Psychiatric Initiatives (InSPIRES), Department of Psychiatry, New York University School of Medicine. Other study authors were Julie Walsh-Messinger of the University of Dayton Department of Psychology and Raymond Goetz of the New York State Psychiatric Institute, Division of Clinical Phenomenology.

This work was supported by the National Institutes of Health grants RC1-MH088843, K24-MH001699, NYU CTSI UL1TR000038, and R01-MH086651.

NYU Langone Medical Center / New York University School of Medicine

Related Schizophrenia Articles:

Schizophrenia: When the thalamus misleads the ear
Scientists at the University of Geneva (UNIGE) and the Synapsy National Centre of Competence in Research (NCCR) have succeeded in linking the onset of auditory hallucinations - one of the most common symptoms of schizophrenia - with the abnormal development of certain substructures of a region deep in the brain called the thalamus.
Unlocking schizophrenia
New research, led by Prof. LIU Bing and Prof. JIANG Tianzi from the Institute of Automation of the Chinese Academy of Sciences and their collaborators have recently developed a novel imaging marker that may help in the personalized medicine of psychiatric disorders.
Researchers discover second type of schizophrenia
In a study of more than 300 patients from three continents, over one third had brains that looked similar to healthy people.
New clues into the genetic origins of schizophrenia
The first genetic analysis of schizophrenia in an ancestral African population, the South African Xhosa, appears in the Jan.
Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.
Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.
Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.
The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.
Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.
Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.
More Schizophrenia News and Schizophrenia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.